Strength reduction method in Barodesy

Abstract Strength reduction analysis are very common in geotechnical engineering to define a factor of safety of structures, e.g. slopes. Usually, the M ohr -C oulomb strength parameters friction angle φ ′ and cohesion c ′ are reduced until limit equilibrium is reached. This method is only applicable to material models which utilize a M ohr -C oulomb or similar (e.g. D rucker -P rager ) failure criterion. In this article a strength reduction method for the barodetic material model is introduced and the results of slope stability calculations compared with the results with an elasto-plastic material model (M ohr -C oulomb ) and with the results of an analytical analysis according to B ishop are presented. The strength reduction method for barodesy has been implemented in the Finite Element code A baqus .

[1]  Ivo Herle,et al.  Experimentelle Bestimmung der Nichtlinearität von Spannungsgrenzbedingungen im Bereich geringer Spannungen , 2017 .

[2]  Helmut Schweiger,et al.  Comparison of finite-element limit analysis and strength reduction techniques , 2015 .

[3]  Wolfgang Fellin,et al.  Stability of infinite slopes investigated with elastoplasticity and hypoplasticity , 2016 .

[4]  K. Roscoe,et al.  ON THE GENERALIZED STRESS-STRAIN BEHAVIOUR OF WET CLAY , 1968 .

[5]  Wolfgang Fellin,et al.  Barodesy for clay , 2012 .

[6]  Helmut Schweiger,et al.  Zur Beurteilung der Standsicherheit von Böschungen mit unterschiedlichen Verfahren , 2017 .

[7]  Lidija Zdravković,et al.  Accounting for partial material factors in numerical analysis , 2012 .

[8]  D. J. Henkel The Effect of Overconsolidation on the Behaviour of Clays During Shear , 1956 .

[9]  D. Wood Soil Behaviour and Critical State Soil Mechanics , 1991 .

[10]  David Mašín,et al.  Clay hypoplasticity with explicitly defined asymptotic states , 2013 .

[11]  Helmut Schweiger,et al.  Slope stability analysis by means of finite element limit analysis and finite element strength reduction techniques. Part I: Numerical studies considering non-associated plasticity , 2015 .

[12]  Wolfgang Fellin,et al.  Zur Rolle der Materialmodelle beim Standsicherheitsnachweis , 2016 .

[13]  David Mašín,et al.  Hypoplastic Cam-clay model , 2012 .

[14]  Barbara Schneider-Muntau,et al.  Simulation of shear bands with Soft PARticle Code (SPARC) and FE , 2017, GEM : international journal on geomathematics.

[15]  Wolfgang Fellin,et al.  Consistent tangent operators for constitutive rate equations , 2002 .

[16]  Wolfgang Fellin,et al.  Proportional stress and strain paths in barodesy , 2016 .

[17]  Helmut Schweiger,et al.  Slope stability analysis by means of finite element limit analysis and finite element strength reduction techniques. Part II: Back analyses of a case history , 2015 .

[18]  Wolfgang Fellin,et al.  An improved version of barodesy for clay , 2017 .

[19]  D. Maš́ın,et al.  A hypoplastic constitutive model for clays , 2005 .