Multiwavelength study of X-ray selected star-forming galaxies within the Chandra Deep Field-South

We have combined multiwavelength observations of a selected sample of star-forming galaxies with galaxy evolution models in order to compare the results obtained for different star formation rate (SFR) tracers and to study the effect that the evolution of the star-forming regions has on them. We also aimed at obtaining a better understanding of the corrections due to extinction and nuclear activity on the derivation of the SFR. We selected the sample from Chandra data for the well studied region Chandra Deep Field-South (CDFS) and chose the objects that also have ultraviolet (UV) and infrared (IR) data from Galaxy Evolution Explorer (GALEX) and Great Observatories Origins Deep Survey (GOODS) Spitzer, respectively. Our main finding is that there is good agreement between the extinction corrected SFR(UV) and the SFR(X), and we confirm the use of X-ray luminosities as a trustful tracer of recent star formation activity. Nevertheless, at SFR(UV) larger than about 5 M⊙ yr−1 there are several galaxies with an excess of SFR(X) suggesting the presence of an obscured active galactic nucleus (AGN) not detected in the optical spectra. We conclude that the IR luminosity is driven by recent star formation even in those galaxies where the SFR(X) is an order of magnitude higher than the SFR(UV) and therefore may harbour an AGN. One object shows SFR(X) much lower than expected based on the SFR(UV); this SFR(X) ‘deficit’ may be due to an early transient phase before most of the massive X-ray binaries were formed. An X-ray deficit could be used to select extremely young bursts in an early phase just after the explosion of the first supernovae associated with massive stars and before the onset of massive X-ray binaries.

[1]  B. Guiderdoni,et al.  New spectroscopic redshifts from the CDFS and a test of the cosmological relevance of the GOODS-South field , 2006, astro-ph/0612152.

[2]  R. Terlevich,et al.  Thermal Emission from H II Galaxies: Discovering the Youngest Systems , 2006, astro-ph/0609181.

[3]  Luis Carrasco,et al.  The Star Formation History of the Disk of the Starburst Galaxy M82 , 2006, astro-ph/0605669.

[4]  C. Leitherer,et al.  Ultraviolet-to-Far-Infrared Properties of Local Star-forming Galaxies , 2006, astro-ph/0602064.

[5]  M. Birkinshaw,et al.  New Visions of the X-ray Universe in the XMM-Newton and Chandra Era. Noordwijk, Nov 2001 , 2006 .

[6]  L. Silva,et al.  The evolution of actively star-forming galaxies in the mid-infrared , 2005, astro-ph/0510080.

[7]  B. Garilli,et al.  The Vimos VLT Deep Survey: Compact structures in the CDFS , 2005, astro-ph/0507690.

[8]  Spain.,et al.  Star formation and dust attenuation properties in galaxies from a statistical ultraviolet‐to‐far‐infrared analysis , 2005, astro-ph/0504434.

[9]  M. Carollo,et al.  Evolution of Field Early-Type Galaxies: The View from GOODS CDFS , 2005, astro-ph/0504127.

[10]  R. Tuffs,et al.  The Spectral Energy Distribution of Gas-Rich Galaxies: Confronting Models with Data , 2005 .

[11]  Caltech,et al.  X-ray properties of UV-selected star-forming galaxies at z ∼ 1 in the Hubble Deep Field North , 2005, astro-ph/0501411.

[12]  A. Szalay,et al.  Dust Attenuation in the Nearby Universe: A Comparison between Galaxies Selected in the Ultraviolet and in the Far-Infrared , 2004, astro-ph/0411343.

[13]  A. Szalay,et al.  The On-Orbit Performance of the Galaxy Evolution Explorer , 2004, astro-ph/0411310.

[14]  T. Takeuchi,et al.  Mid-infrared luminosity as an indicator of the total infrared luminosity of galaxies , 2004, astro-ph/0411196.

[15]  R. Bender,et al.  The Star Formation Rate History in the FORS Deep and GOODS-South Fields , 2004, astro-ph/0409515.

[16]  Paul S. Smith,et al.  The Multiband Imaging Photometer for Spitzer (MIPS) , 2004 .

[17]  M. Irwin,et al.  ImpZ: a new photometric redshift code for galaxies and quasars , 2004, astro-ph/0406296.

[18]  A. Cimatti,et al.  A catalogue of the Chandra Deep Field South with multi-colour classification and photometric redshifts from COMBO-17 , 2004, astro-ph/0403666.

[19]  A. Franceschini,et al.  2-10 KeV luminosity of high - mass binaries as a gauge of ongoing star - formation rate , 2004, astro-ph/0402568.

[20]  L. Kewley,et al.  The Chandra Deep Field-South: Optical Spectroscopy. I. , 2003, astro-ph/0312324.

[21]  A. Bressan,et al.  Star Formation History and Extinction in the Central Kiloparsec of M82-like Starbursts , 2003, astro-ph/0309339.

[22]  S. M. Fall,et al.  The Great Observatories Origins Deep Survey: Initial Results from Optical and Near-Infrared Imaging , 2003, astro-ph/0309105.

[23]  R. Maiolino,et al.  Elusive active galactic nuclei , 2003, astro-ph/0307380.

[24]  D. M. Alexander,et al.  The Chandra Deep Field North Survey. XIII. 2 Ms Point-Source Catalogs , 2003, astro-ph/0304392.

[25]  A. Comastri,et al.  The 2-10 keV luminosity as a Star Formation Rate indicator , 2002, astro-ph/0202241.

[26]  W. Brandt,et al.  The Chandra Deep Field North Survey. XII. The Link between Faint X-Ray and Radio Source Populations , 2002, astro-ph/0207433.

[27]  M. Cervino,et al.  Evolutionary synthesis models of starbursts IV. Soft X-ray emission , 2002, astro-ph/0206331.

[28]  Marat Gilfanov,et al.  High mass x-ray binaries as a star formation rate indicator in distant galaxies , 2002 .

[29]  K. Nandra,et al.  X-Ray Properties of Lyman Break Galaxies in the Hubble Deep Field-North Region , 2002, astro-ph/0205215.

[30]  Cambridge,et al.  An empirical calibration of star formation rate estimators , 2001, astro-ph/0112556.

[31]  R. Sunyaev,et al.  The Milky Way in X-rays for an outside observer , 2001, astro-ph/0109239.

[32]  Roberto Gilmozzi,et al.  Chandra Deep Field South: The 1 Ms Catalog , 2002 .

[33]  Daniela Calzetti,et al.  Far-Infrared Galaxies in the Far-Ultraviolet , 2001, astro-ph/0112352.

[34]  L. Kewley,et al.  The Chandra Deep Field-South: The 1 Million Second Exposure , 2001, astro-ph/0110452.

[35]  A. Fabian,et al.  A hard X-ray constraint on the presence of an AGN in the ultraluminous infrared galaxy Arp 220 , 2001, astro-ph/0103417.

[36]  S. Borgani,et al.  New Results from the X-Ray and Optical Survey of the Chandra Deep Field-South: The 300 Kilosecond Exposure. II. , 2001, astro-ph/0103014.

[37]  M. Yun,et al.  Radio Properties of Infrared-selected Galaxies in the IRAS 2 Jy Sample , 2001, astro-ph/0102154.

[38]  S. Borgani,et al.  First Results from the X-Ray and Optical Survey of the Chandra Deep Field South , 2000, astro-ph/0007240.

[39]  Alessandro Bressan,et al.  Modeling the Effects of Dust on Galactic Spectral Energy Distributions from the Ultraviolet to the Millimeter Band , 1998 .

[40]  Jr.,et al.  STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.

[41]  L. Pozzetti,et al.  The Star Formation History of Field Galaxies , 1997, astro-ph/9708220.

[42]  A. Fruchter,et al.  HIGH-REDSHIFT GALAXIES IN THE HUBBLE DEEP FIELD : COLOUR SELECTION AND STAR FORMATION HISTORY TO Z 4 , 1996, astro-ph/9607172.

[43]  O. Fèvre,et al.  The Canada-France Redshift Survey. VI. Evolution of the Galaxy Luminosity Function to Z approximately 1 , 1995, astro-ph/9507079.

[44]  A. Kinney,et al.  Dust extinction of the stellar continua in starburst galaxies: The Ultraviolet and optical extinction law , 1994 .

[45]  W. Forman,et al.  X-ray properties of bright far-infrared galaxies , 1992 .

[46]  James J. Condon,et al.  Radio Emission from Normal Galaxies , 1992 .

[47]  Giuseppina Fabbiano,et al.  X Rays From Normal Galaxies , 1989 .

[48]  D. Osterbrock,et al.  Astrophysics of Gaseous Nebulae and Active Galactic Nuclei , 1989 .

[49]  I. Howarth LMC and galactic extinction , 1983 .

[50]  M. Seaton,et al.  Interstellar extinction in the UV , 1979 .