Novel results for a class of singular perturbed slow-fast system

In this paper, an iterative method is illustrated for solving a class of singular perturbed slow-fast system including two or three differential equations. By some techniques, we not only give an error accuracy by differential inequality but also present an error estimate formula. At last, some typical examples are given to illustrate the new iterative method is a useful tool.

[1]  Ferdinand Verhulst,et al.  Singular perturbation methods for slow–fast dynamics , 2007 .

[2]  M. Mangel Singular Perturbation Methods in Control: Analysis and Design (Petar Kokotovic, Hassan K. Khalil, and John O’Reilly) , 1988 .

[3]  Zoran Gajic,et al.  Improvement of system order reduction via balancing using the method of singular perturbations , 2001, Autom..

[4]  Petar V. Kokotovic,et al.  Singular perturbations and order reduction in control theory - An overview , 1975, at - Automatisierungstechnik.

[5]  Hassan K. Khalil,et al.  Singular perturbation methods in control : analysis and design , 1986 .

[6]  G. S. Ladde,et al.  Diagonalization and stability of multi-time-scale singularly perturbed linear systems , 1985 .

[7]  Joe H. Chow,et al.  Singular perturbation and iterative separation of time scales , 1980, Autom..

[8]  Zoran Gajic,et al.  Exact slow-fast decomposition of the singularly perturbed matrix differential Riccati equation , 2010, Appl. Math. Comput..

[9]  Bonnie S. Heck,et al.  Singular perturbation in piecewise-linear systems , 1989 .

[10]  Emilia Fridman,et al.  Exact slow{fast decomposition of the nonlinear singularly perturbed optimal control problem , 2000 .

[11]  N. Prljaca,et al.  General Transformation for Block Diagonalization of Multitime-Scale Singularly Perturbed Linear Systems , 2008, IEEE Transactions on Automatic Control.

[12]  N. Berglund,et al.  Geometric singular perturbation theory for stochastic differential equations , 2002 .

[13]  Taoufik Bakri,et al.  The dynamics of slow manifolds , 2007 .

[14]  M. Stiefenhofer Singular perturbation with Limit points in the fast dynamics , 1998 .

[15]  G. S. Ladde,et al.  Singularly perturbed linear boundary value problems , 1992 .

[16]  A. Nayfeh Introduction To Perturbation Techniques , 1981 .

[17]  M. Pai,et al.  Reduced order modeling of synchronous machines using singular perturbation , 1982 .

[18]  F. Sun,et al.  New results on static output feedback H ∞  control for fuzzy singularly perturbed systems: a linear matrix inequality approach , 2013 .

[19]  Zoran Gajic,et al.  Optimal Control of Singularly Perturbed Linear Systems and Applications: High-Accuracy Techniques , 2007 .