On the Recursive Joint Position and Attitude Determination in Multi-Antenna GNSS Platforms

Global Navigation Satellite Systems’ (GNSS) carrier phase observations are fundamental in the provision of precise navigation for modern applications in intelligent transport systems. Differential precise positioning requires the use of a base station nearby the vehicle location, while attitude determination requires the vehicle to be equipped with a setup of multiple GNSS antennas. In the GNSS context, positioning and attitude determination have been traditionally tackled in a separate manner, thus losing valuable correlated information, and for the latter only in batch form. The main goal of this contribution is to shed some light on the recursive joint estimation of position and attitude in multi-antenna GNSS platforms. We propose a new formulation for the joint positioning and attitude (JPA) determination using quaternion rotations. A Bayesian recursive formulation for JPA is proposed, for which we derive a Kalman filter-like solution. To support the discussion and assess the performance of the new JPA, the proposed methodology is compared to standard approaches with actual data collected from a dynamic scenario under the influence of severe multipath effects.

[1]  P. Teunissen A General Multivariate Formulation of the Multi-Antenna GNSS Attitude Determination Problem , 2007 .

[2]  Pau Closas,et al.  Robust Kalman Filter for RTK Positioning under Signal-Degraded Scenarios , 2019 .

[3]  Stergios I. Roumeliotis,et al.  A Multi-State Constraint Kalman Filter for Vision-aided Inertial Navigation , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[4]  Peter Teunissen,et al.  Testing a new multivariate GNSS carrier phase attitude determination method for remote sensing platforms , 2010 .

[5]  Marco Pini,et al.  Loose and Tight GNSS/INS Integrations: Comparison of Performance Assessed in Real Urban Scenarios , 2017, Sensors.

[6]  Y. Bar-Shalom,et al.  The interacting multiple model algorithm for systems with Markovian switching coefficients , 1988 .

[7]  Michael Bosse,et al.  Keyframe-based visual–inertial odometry using nonlinear optimization , 2015, Int. J. Robotics Res..

[8]  Gabriele Giorgi,et al.  Testing of a new single-frequency GNSS carrier phase attitude determination method: land, ship and aircraft experiments , 2011 .

[9]  Ralf Ziebold,et al.  Attitude Determination via GNSS Carrier Phase and Inertial Aiding , 2019, Proceedings of the 32nd International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2019).

[10]  Joan Solà,et al.  Quaternion kinematics for the error-state Kalman filter , 2015, ArXiv.

[11]  Richard B. Langley RTK GPS , 1998 .

[12]  John Stillwell,et al.  Naive Lie Theory , 2008 .

[13]  Andreas Brack Partial ambiguity resolution for reliable GNSS positioning — A useful tool? , 2016, 2016 IEEE Aerospace Conference.

[14]  Bertram Taetz,et al.  On Attitude Representations for Optimization-Based Bayesian Smoothing , 2019, 2019 22th International Conference on Information Fusion (FUSION).

[15]  Daniel Medina,et al.  On the Kalman filtering formulation for RTK joint positioning and attitude quaternion determination , 2018, 2018 IEEE/ION Position, Location and Navigation Symposium (PLANS).

[16]  Zhiyu Wang,et al.  Validation and Assessment of Multi-GNSS Real-Time Precise Point Positioning in Simulated Kinematic Mode Using IGS Real-Time Service , 2018, Remote. Sens..

[17]  Axel Barrau,et al.  Intrinsic Filtering on Lie Groups With Applications to Attitude Estimation , 2013, IEEE Transactions on Automatic Control.

[18]  Daniel Medina,et al.  Robust Statistics for GNSS Positioning under Harsh Conditions: A Useful Tool? , 2019, Sensors.

[19]  Gabriele Giorgi,et al.  GNSS Carrier Phase-Based Attitude Determination , 2012 .

[20]  Patrick Henkel,et al.  Precise point positioning with multipath estimation , 2016, 2016 IEEE/ION Position, Location and Navigation Symposium (PLANS).

[21]  Xiaowei Cui,et al.  Precise and Robust RTK-GNSS Positioning in Urban Environments with Dual-Antenna Configuration , 2019, Sensors.

[22]  N. Trawny,et al.  Indirect Kalman Filter for 3 D Attitude Estimation , 2005 .

[23]  Dinesh Atchuthan,et al.  A micro Lie theory for state estimation in robotics , 2018, ArXiv.

[24]  Iván Darío Herrera Pinzón,et al.  Methods of Robust Snapshot Positioning in Multi-Antenna Systems for Inland water Applications , 2017 .

[25]  P. Teunissen,et al.  The ratio test for future GNSS ambiguity resolution , 2013, GPS Solutions.

[26]  P. Teunissen An optimality property of the integer least-squares estimator , 1999 .

[27]  F. Markley Attitude Error Representations for Kalman Filtering , 2003 .

[28]  Daniel Medina,et al.  Compact CRB for delay, Doppler, and phase estimation – application to GNSS SPP and RTK performance characterisation , 2020 .

[29]  Eckhard Meinrenken,et al.  LIE GROUPS AND LIE ALGEBRAS , 2021, Lie Groups, Lie Algebras, and Cohomology. (MN-34), Volume 34.

[30]  Antonio F. Gómez-Skarmeta,et al.  High-Integrity IMM-EKF-Based Road Vehicle Navigation With Low-Cost GPS/SBAS/INS , 2007, IEEE Transactions on Intelligent Transportation Systems.

[31]  Chris Rizos,et al.  Integrity Monitoring for Horizontal RTK Positioning: New Weighting Model and Overbounding CDF in Open-Sky and Suburban Scenarios , 2020, Remote. Sens..

[32]  John L. Crassidis,et al.  Survey of nonlinear attitude estimation methods , 2007 .

[33]  Daniel Medina,et al.  Cramér-Rao bound for a mixture of real- and integer-valued parameter vectors and its application to the linear regression model , 2021, Signal Process..

[34]  G. Lachapelle,et al.  User-level reliability monitoring in urban personal satellite-navigation , 2007, IEEE Transactions on Aerospace and Electronic Systems.

[35]  Eric Chaumette,et al.  Performance Limits of GNSS Code-Based Precise Positioning: GPS, Galileo & Meta-Signals , 2020, Sensors.

[36]  Frank Dellaert,et al.  On-Manifold Preintegration for Real-Time Visual--Inertial Odometry , 2015, IEEE Transactions on Robotics.

[37]  Dennis Odijk,et al.  Weighting Ionospheric Corrections to Improve Fast GPS Positioning Over Medium Distances , 2000 .

[38]  Gabriele Giorgi,et al.  GNSS Carrier Phase-based Attitude Determination: Estimation and Applications , 2011 .

[39]  Daniel Medina,et al.  Determination of Pseudorange Error Models and Multipath Characterization under Signal-Degraded Scenarios , 2018 .

[40]  W. D. Blair,et al.  IMM estimators with unbiased mixing for tracking targets performing coordinated turns , 2013, 2013 IEEE Aerospace Conference.

[41]  P. Teunissen The least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation , 1995 .

[42]  P. D. Jonge,et al.  The LAMBDA method for integer ambiguity estimation: implementation aspects , 1996 .

[43]  Christian Eling,et al.  Real-Time Single-Frequency GPS/MEMS-IMU Attitude Determination of Lightweight UAVs , 2015, Sensors.

[44]  Thiagalingam Kirubarajan,et al.  Estimation with Applications to Tracking and Navigation , 2001 .

[45]  Levent Tunçel,et al.  Optimization algorithms on matrix manifolds , 2009, Math. Comput..

[46]  S. Verhagen Integer ambiguity validation: an open problem? , 2004 .