Classification of directional dynamics for additive cellular automata

We continue the study of cellular automata (CA) directional dynamics, i.e. the behavior of the joint action of CA and shift maps. This notion has been investigated for general CA in the case of expansive dynamics by Boyle and by Sablik for sensitivity and equicontinuity. In this paper we give a detailed classification for the class of additive CA providing non-trivial examples for some classes of Sablik's classification. Moreover, we extend the directional dynamics studies by considering also factor languages and attractors.

[1]  P. Kurka Languages, equicontinuity and attractors in cellular automata , 1997, Ergodic Theory and Dynamical Systems.

[2]  Petr Kůrka,et al.  Topological dynamics of one-dimensional cellular automata , 2007 .

[3]  D. Lind,et al.  Expansive Subdynamics , 1996 .

[4]  Tadakazu Sato Surjective Linear Cellular Automata over Zm , 1998, Inf. Process. Lett..

[5]  Giovanni Manzini,et al.  Attractors of D-dimensional Linear Cellular Automata , 1998, STACS.

[6]  W. Parry Symbolic dynamics and transformations of the unit interval , 1966 .

[7]  Gianpiero Cattaneo,et al.  Ergodicity, transitivity, and regularity for linear cellular automata over Zm , 2000, Theor. Comput. Sci..

[8]  Giovanni Manzini,et al.  On Computing the Entropy of Cellular Automata , 1998, ICALP.

[9]  Enrico Formenti,et al.  Chaotic Behavior of Cellular Automata , 2009, Encyclopedia of Complexity and Systems Science.

[10]  Giovanni Manzini,et al.  Invertible Linear Cellular Automata over zm: Algorithmic and Dynamical Aspects , 1997, MFCS.

[11]  Pietro Di Lena,et al.  Computational complexity of dynamical systems: The case of cellular automata , 2007, Inf. Comput..

[12]  Jarkko Kari,et al.  Tiling Problem and Undecidability in Cellular Automata , 2009, Encyclopedia of Complexity and Systems Science.

[13]  Enrico Formenti,et al.  On undecidability of equicontinuity classification for cellular automata , 2003, DMCS.

[14]  Symbolic dynamics , 2008, Scholarpedia.

[15]  John Milnor,et al.  Directional Entropies of Cellular Automaton-Maps , 1986 .

[16]  Petr Kurka,et al.  Dynamics of Cellular Automata in Non-compact Spaces , 2009, Encyclopedia of Complexity and Systems Science.

[17]  François Blanchard,et al.  Dynamical properties of expansive one-sided cellular automata , 1997 .

[18]  Karel Culik,et al.  Undecidability of CA Classification Schemes , 1988, Complex Syst..

[19]  Luigi Acerbi,et al.  Conservation of some dynamical properties for operations on cellular automata , 2009, Theor. Comput. Sci..

[20]  Giovanni Manzini,et al.  A Complete and Efficiently Computable Topological Classification of D-dimensional Linear Cellular Automata over Zm , 1999, Theor. Comput. Sci..

[21]  Douglas Lind,et al.  An Introduction to Symbolic Dynamics and Coding , 1995 .

[22]  Petr Kůrka,et al.  Topological and symbolic dynamics , 2003 .

[23]  Doris Fiebig Symbolic Dynamics. One-sided, Two-sided and Countable State Markov Shifts. By Bruce P. Kitchens Springer Universitext. ISBN 3-540-62738-3. , 2001, Ergodic Theory and Dynamical Systems.

[24]  Gianpiero Cattaneo,et al.  Pattern Growth in Elementary Cellular Automata , 1995, Theor. Comput. Sci..

[25]  Mathieu Sablik Directional dynamics for cellular automata: A sensitivity to initial condition approach , 2008, Theor. Comput. Sci..

[26]  Masakazu Nasu,et al.  Textile systems for endomorphisms and automorphisms of the shift , 1995 .

[27]  Luigi Acerbi,et al.  Shifting and Lifting of Cellular Automata , 2007 .

[28]  Ludwig Staiger,et al.  Ω-languages , 1997 .

[29]  Gianpiero Cattaneo,et al.  Solution of some conjectures about topological properties of linear cellular automata , 2004, Theor. Comput. Sci..

[30]  Nobuyasu Osato,et al.  Linear Cellular Automata over Z_m , 1983, J. Comput. Syst. Sci..

[31]  Robert H. Gilman Classes of linear automata , 1987 .

[32]  Pietro Di Lena Decidable Properties for Regular Cellular Automata , 2006, IFIP TCS.

[33]  Jarkko Kari Rice's Theorem for the Limit Sets of Cellular Automata , 1994, Theor. Comput. Sci..