Simulating of the measurement-device independent quantum key distribution with phase randomized general sources

We present a model on the simulation of the measurement-device independent quantum key distribution (MDI-QKD) with phase randomized general sources. It can be used to predict experimental observations of a MDI-QKD with linear channel loss, simulating corresponding values for the gains, the error rates in different basis, and also the final key rates. Our model can be applicable to the MDI-QKDs with arbitrary probabilistic mixture of different photon states or using any coding schemes. Therefore, it is useful in characterizing and evaluating the performance of the MDI-QKD protocol, making it a valuable tool in studying the quantum key distributions.

[1]  M. Fejer,et al.  Experimental measurement-device-independent quantum key distribution. , 2012, Physical review letters.

[2]  V. Scarani,et al.  The security of practical quantum key distribution , 2008, 0802.4155.

[3]  Raviraj S. Adve,et al.  Improving amplify-and-forward relay networks: optimal power allocation versus selection , 2006, IEEE Transactions on Wireless Communications.

[4]  John Preskill,et al.  Security of quantum key distribution with imperfect devices , 2002, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[5]  Sellami Ali,et al.  DECOY STATE QUANTUM KEY DISTRIBUTION , 2010 .

[6]  M. Curty,et al.  Measurement-device-independent quantum key distribution. , 2011, Physical review letters.

[7]  Masato Koashi,et al.  Simple and efficient quantum key distribution with parametric down-conversion. , 2007, Physical review letters.

[8]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[9]  2004b, A decoy-state protocol for quantum cryptography with 4 intensities of coherent light, Los Alamos e-print archive: quant-ph/0411047 , .

[10]  Renato Renner,et al.  Security Bounds for Quantum Cryptography with Finite Resources , 2008, TQC.

[11]  H. Inamori,et al.  Unconditional security of practical quantum key distribution , 2007 .

[12]  H. Lo,et al.  Phase encoding schemes for measurement-device-independent quantum key distribution with basis-dependent flaw , 2011, 1111.3413.

[13]  Xiang‐Bin Wang,et al.  Beating the PNS attack in practical quantum cryptography , 2004 .

[14]  J. Dynes,et al.  Unconditionally secure one-way quantum key distribution using decoy pulses , 2007, 2007 Quantum Electronics and Laser Science Conference.

[15]  C. G. Peterson,et al.  Long-distance decoy-state quantum key distribution in optical fiber. , 2006, Physical review letters.

[16]  Christian Kurtsiefer,et al.  Full-field implementation of a perfect eavesdropper on a quantum cryptography system. , 2010, Nature communications.

[17]  N. Lutkenhaus,et al.  Quantum key distribution with realistic states: photon-number statistics in the photon-number splitting attack , 2001, quant-ph/0112147.

[18]  Hoi-Kwong Lo,et al.  Long distance measurement-device-independent quantum key distribution with entangled photon sources , 2013, 1306.5814.

[19]  Renato Renner,et al.  Quantum cryptography with finite resources: unconditional security bound for discrete-variable protocols with one-way postprocessing. , 2007, Physical review letters.

[20]  N. Lutkenhaus Security against individual attacks for realistic quantum key distribution , 1999, quant-ph/9910093.

[21]  Tao Zhang,et al.  Experimental decoy-state quantum key distribution with a sub-poissionian heralded single-photon source. , 2008, Physical review letters.

[22]  Jian-Wei Pan,et al.  Decoy-state quantum key distribution with both source errors and statistical fluctuations , 2009, 0902.4660.

[23]  Qiaoyan Wen,et al.  Finite-key analysis for measurement-device-independent quantum key distribution , 2012 .

[24]  M. Dušek,et al.  Chapter 5 - Quantum cryptography , 2006, quant-ph/0601207.

[25]  N. Gisin,et al.  Proposal for implementing device-independent quantum key distribution based on a heralded qubit amplifier. , 2010, Physical review letters.

[26]  Xiongfeng Ma,et al.  Statistical fluctuation analysis for measurement-device-independent quantum key distribution , 2012, 1210.3929.

[27]  Qin Wang,et al.  Efficient implementation of the decoy-state measurement-device-independent quantum key distribution with heralded single-photon sources , 2013, 1305.6480.

[28]  Charles H. Bennett,et al.  WITHDRAWN: Quantum cryptography: Public key distribution and coin tossing , 2011 .

[29]  M. Hayashi Upper bounds of eavesdropper’s performances in finite-length code with the decoy method , 2007, quant-ph/0702250.

[30]  Gilles Brassard,et al.  Quantum Cryptography , 2005, Encyclopedia of Cryptography and Security.

[31]  I Lucio-Martinez,et al.  Real-world two-photon interference and proof-of-principle quantum key distribution immune to detector attacks. , 2013, Physical review letters.

[32]  Masahito Hayashi,et al.  Practical evaluation of security for quantum key distribution , 2006 .

[33]  Xiang‐Bin Wang,et al.  Three-intensity decoy-state method for device-independent quantum key distribution with basis-dependent errors , 2012, 1207.0392.

[34]  J. Skaar,et al.  Hacking commercial quantum cryptography systems by tailored bright illumination , 2010, 1008.4593.

[35]  Yi Zhao,et al.  Experimental quantum key distribution with decoy states. , 2006, Physical review letters.

[36]  M. Hayashi,et al.  Quantum information with Gaussian states , 2007, 0801.4604.

[37]  Horace P. Yuen,et al.  Quantum amplifiers, quantum duplicators and quantum cryptography , 1996 .

[38]  V. Scarani,et al.  Device-independent security of quantum cryptography against collective attacks. , 2007, Physical review letters.

[39]  T. Kobayashi,et al.  Quantum key distribution with a heralded single photon source , 2007, International Quantum Electronics Conference, 2005..

[40]  H. Lo,et al.  Practical Decoy State for Quantum Key Distribution , 2005, quant-ph/0503005.

[41]  Jian-Wei Pan,et al.  General theory of decoy-state quantum cryptography with source errors , 2006, quant-ph/0612121.

[42]  Stefano Pirandola,et al.  Side-channel-free quantum key distribution. , 2011, Physical review letters.

[43]  Chun-Mei Zhang,et al.  Improved statistical fluctuation analysis for measurement-device-independent quantum key distribution , 2012 .

[44]  Masahito Hayashi Erratum: Upper bounds of eavesdropper's performances in finite-length code with the decoy method [Phys. Rev. A 76, 012329 (2007)] , 2009 .

[45]  Sanders,et al.  Limitations on practical quantum cryptography , 2000, Physical review letters.

[46]  Jian-Wei Pan,et al.  Experimental long-distance decoy-state quantum key distribution based on polarization encoding. , 2006, Physical review letters.

[47]  Gisin,et al.  Quantum cryptography with coherent states. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[48]  H. Weinfurter,et al.  Experimental Demonstration of Free-Space Decoy-State Quantum Key Distribution over 144 km , 2007, 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference.

[49]  H. Weinfurter,et al.  Experimental Demonstration of Free-Space Decoy-State Quantum Key Distribution over 144 km , 2007, 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference.

[50]  Xiang‐Bin Wang,et al.  Reexamination of the decoy-state quantum key distribution with an unstable source , 2010 .

[51]  Won-Young Hwang Quantum key distribution with high loss: toward global secure communication. , 2003, Physical review letters.

[52]  Andrew Chi-Chih Yao,et al.  Quantum cryptography with imperfect apparatus , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).