Quadratic Chabauty for modular curves: Algorithms and examples
暂无分享,去创建一个
[1] Victor Scharaschkin,et al. Local -global problems and the Brauer -Manin obstruction. , 1999 .
[2] John J. Cannon,et al. The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..
[3] Steven D. Galbraith,et al. Equations for modular curves , 1996 .
[4] Semistable reduction of modular curves associated with maximal subgroups in prime level , 2019, 1907.02418.
[5] P. Parent,et al. Rational points on Atkin-Lehner quotients of Shimura curves , 2011 .
[6] Shou-Wu Zhang,et al. Admissible pairing on a curve , 1993 .
[7] Jennifer S. Balakrishnan,et al. Quadratic Chabauty and rational points, I: p-adic heights , 2016, Duke Mathematical Journal.
[8] Josha Box. Quadratic points on modular curves with infinite Mordell-Weil group , 2021, Math. Comput..
[9] Jennifer S. Balakrishnan,et al. Quadratic Chabauty and Rational Points II: Generalised Height Functions on Selmer Varieties , 2017, International Mathematics Research Notices.
[10] Pietro Mercuri,et al. Modular forms invariant under non-split Cartan subgroups , 2018, Math. Comput..
[11] Minhyong Kim. The motivic fundamental group of P1∖{0,1,∞} and the theorem of Siegel , 2005 .
[12] Jennifer S. Balakrishnan,et al. Explicit quadratic Chabauty over number fields , 2019, Israel Journal of Mathematics.
[13] Appendix and erratum to “Massey products for elliptic curves of rank 1” , 2011 .
[14] M. Waldschmidt. On the p-adic closure of a subgroup of rational points on an Abelian variety , 2010, 1012.4823.
[15] Jennifer S. Balakrishnan,et al. Explicit Coleman integration for curves , 2017, Math. Comput..
[16] M. Stoll,et al. The Mordell-Weil sieve : proving non-existence of rational points on curves , 2009, 0906.1934.
[17] Michael Stoll,et al. Empirical evidence for the Birch and Swinnerton-Dyer conjectures for modular Jacobians of genus 2 curves , 2001, Math. Comput..
[18] Jennifer S. Balakrishnan,et al. Computing local p-adic height pairings on hyperelliptic curves , 2010, 1010.6009.
[19] Jennifer S. Balakrishnan,et al. A non-abelian conjecture of Tate–Shafarevich type for hyperbolic curves , 2012, Mathematische Annalen.
[20] Tetrahedral elliptic curves and the local-global principle for isogenies , 2013, 1306.6818.
[21] Jan Steffen Müller,et al. Computing canonical heights using arithmetic intersection theory , 2011, Math. Comput..
[22] The p-adic height pairings of Coleman-Gross and of Nekovar , 2002, math/0209006.
[23] J. Nekovář. On p-adic height pairings , 2002 .
[24] Jennifer S. Balakrishnan,et al. Explicit Chabauty—Kim for the split Cartan modular curve of level 13 , 2017, Annals of Mathematics.
[26] M. Raynaud. p-groupes et réduction semi-stable des courbes , 1990 .
[27] Rational points on Atkin-Lehner quotients of Shimura curves , 2011 .
[28] N. Dogra,et al. Quadratic Chabauty for modular curves and modular forms of rank one , 2019, Mathematische Annalen.
[29] Bart de Smit,et al. Sur un resultat d'Imin Chen , 1999, math/9911271.
[30] Minhyong Kim. Massey products for elliptic curves of rank 1 , 2009, 0901.4668.
[31] David Holmes,et al. Explicit arithmetic intersection theory and computation of Néron-Tate heights , 2018, Math. Comput..
[32] Courbes modulaires de niveau 11 , 1977 .
[33] Rational points on X + 0 ( N ) and quadratic Q-curves , 2018 .
[34] Jan Tuitman,et al. Counting points on curves using a map to P1, II , 2014, Finite Fields Their Appl..
[35] Jennifer S. Balakrishnan,et al. Coleman-Gross height pairings and the $p$-adic sigma function , 2012, 1201.6016.
[36] John Voight,et al. Rigorous computation of the endomorphism ring of a Jacobian , 2017, Math. Comput..
[37] GEOMETRIC QUADRATIC CHABAUTY , 2019, 1910.10752.
[38] Jan Tuitman,et al. Counting points on curves using a map to P1 , 2014, Math. Comput..
[39] Jean-Pierre Serre. Propriétés galoisiennes des points d'ordre fini des courbes elliptiques , 1971 .
[40] Minhyong Kim,et al. The l-component of the unipotent Albanese map , 2006, math/0611384.
[41] David Zureick-Brown. Elliptic curves over Q and 2-adic images of Galois , 2015 .
[42] On Relations between Jacobians of Certain Modular Curves , 1998, math/9809209.
[43] Everett W. Howe,et al. On the Existence of Absolutely Simple Abelian Varieties of a Given Dimension over an Arbitrary Field , 2000, math/0002205.
[44] Computing Néron–Tate heights of points on hyperelliptic Jacobians , 2010, 1004.4503.
[45] Quadratic Chabauty for Modular Curves , 2017, 1704.00473.
[46] Shiva Chidambaram,et al. Quadratic Chabauty for Atkin–Lehner quotients of modular curves of prime level and genus 4, 5, 6 , 2021, Acta Arithmetica.
[47] Jennifer S. Balakrishnan,et al. Computing integral points on hyperelliptic curves using quadratic Chabauty , 2015, Math. Comput..
[48] Netan Dogra,et al. The local theory of unipotent Kummer maps and refined Selmer schemes , 2019, 1909.05734.
[49] Barry Mazur,et al. Rational points on modular curves , 1977 .
[50] P. Berthelot,et al. F-isocrystals and de Rham cohomology. I , 1983 .