Quadratic Chabauty for modular curves: Algorithms and examples

We describe how the quadratic Chabauty method may be applied to explicitly determine the set of rational points on modular curves of genus g > 1 whose Jacobians have Mordell–Weil rank g. This extends our previous work on the split Cartan curve of level 13 and allows us to consider modular curves that may have few known rational points or nontrivial local height contributions at primes of bad reduction. We illustrate our algorithms with a number of examples where we determine the set of rational points on several modular curves of genus 2 and 3: this includes Atkin–Lehner quotients X 0 (N) of prime level N , the curve XS4(13), as well as a few other curves relevant to Mazur’s Program B. We also describe the computation of rational points on the genus 6 non-split Cartan modular curve X ns(17).

[1]  Victor Scharaschkin,et al.  Local -global problems and the Brauer -Manin obstruction. , 1999 .

[2]  John J. Cannon,et al.  The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..

[3]  Steven D. Galbraith,et al.  Equations for modular curves , 1996 .

[4]  Semistable reduction of modular curves associated with maximal subgroups in prime level , 2019, 1907.02418.

[5]  P. Parent,et al.  Rational points on Atkin-Lehner quotients of Shimura curves , 2011 .

[6]  Shou-Wu Zhang,et al.  Admissible pairing on a curve , 1993 .

[7]  Jennifer S. Balakrishnan,et al.  Quadratic Chabauty and rational points, I: p-adic heights , 2016, Duke Mathematical Journal.

[8]  Josha Box Quadratic points on modular curves with infinite Mordell-Weil group , 2021, Math. Comput..

[9]  Jennifer S. Balakrishnan,et al.  Quadratic Chabauty and Rational Points II: Generalised Height Functions on Selmer Varieties , 2017, International Mathematics Research Notices.

[10]  Pietro Mercuri,et al.  Modular forms invariant under non-split Cartan subgroups , 2018, Math. Comput..

[11]  Minhyong Kim The motivic fundamental group of P1∖{0,1,∞} and the theorem of Siegel , 2005 .

[12]  Jennifer S. Balakrishnan,et al.  Explicit quadratic Chabauty over number fields , 2019, Israel Journal of Mathematics.

[13]  Appendix and erratum to “Massey products for elliptic curves of rank 1” , 2011 .

[14]  M. Waldschmidt On the p-adic closure of a subgroup of rational points on an Abelian variety , 2010, 1012.4823.

[15]  Jennifer S. Balakrishnan,et al.  Explicit Coleman integration for curves , 2017, Math. Comput..

[16]  M. Stoll,et al.  The Mordell-Weil sieve : proving non-existence of rational points on curves , 2009, 0906.1934.

[17]  Michael Stoll,et al.  Empirical evidence for the Birch and Swinnerton-Dyer conjectures for modular Jacobians of genus 2 curves , 2001, Math. Comput..

[18]  Jennifer S. Balakrishnan,et al.  Computing local p-adic height pairings on hyperelliptic curves , 2010, 1010.6009.

[19]  Jennifer S. Balakrishnan,et al.  A non-abelian conjecture of Tate–Shafarevich type for hyperbolic curves , 2012, Mathematische Annalen.

[20]  Tetrahedral elliptic curves and the local-global principle for isogenies , 2013, 1306.6818.

[21]  Jan Steffen Müller,et al.  Computing canonical heights using arithmetic intersection theory , 2011, Math. Comput..

[22]  The p-adic height pairings of Coleman-Gross and of Nekovar , 2002, math/0209006.

[23]  J. Nekovář On p-adic height pairings , 2002 .

[24]  Jennifer S. Balakrishnan,et al.  Explicit Chabauty—Kim for the split Cartan modular curve of level 13 , 2017, Annals of Mathematics.

[26]  M. Raynaud p-groupes et réduction semi-stable des courbes , 1990 .

[27]  Rational points on Atkin-Lehner quotients of Shimura curves , 2011 .

[28]  N. Dogra,et al.  Quadratic Chabauty for modular curves and modular forms of rank one , 2019, Mathematische Annalen.

[29]  Bart de Smit,et al.  Sur un resultat d'Imin Chen , 1999, math/9911271.

[30]  Minhyong Kim Massey products for elliptic curves of rank 1 , 2009, 0901.4668.

[31]  David Holmes,et al.  Explicit arithmetic intersection theory and computation of Néron-Tate heights , 2018, Math. Comput..

[32]  Courbes modulaires de niveau 11 , 1977 .

[33]  Rational points on X + 0 ( N ) and quadratic Q-curves , 2018 .

[34]  Jan Tuitman,et al.  Counting points on curves using a map to P1, II , 2014, Finite Fields Their Appl..

[35]  Jennifer S. Balakrishnan,et al.  Coleman-Gross height pairings and the $p$-adic sigma function , 2012, 1201.6016.

[36]  John Voight,et al.  Rigorous computation of the endomorphism ring of a Jacobian , 2017, Math. Comput..

[37]  GEOMETRIC QUADRATIC CHABAUTY , 2019, 1910.10752.

[38]  Jan Tuitman,et al.  Counting points on curves using a map to P1 , 2014, Math. Comput..

[39]  Jean-Pierre Serre Propriétés galoisiennes des points d'ordre fini des courbes elliptiques , 1971 .

[40]  Minhyong Kim,et al.  The l-component of the unipotent Albanese map , 2006, math/0611384.

[41]  David Zureick-Brown Elliptic curves over Q and 2-adic images of Galois , 2015 .

[42]  On Relations between Jacobians of Certain Modular Curves , 1998, math/9809209.

[43]  Everett W. Howe,et al.  On the Existence of Absolutely Simple Abelian Varieties of a Given Dimension over an Arbitrary Field , 2000, math/0002205.

[44]  Computing Néron–Tate heights of points on hyperelliptic Jacobians , 2010, 1004.4503.

[45]  Quadratic Chabauty for Modular Curves , 2017, 1704.00473.

[46]  Shiva Chidambaram,et al.  Quadratic Chabauty for Atkin–Lehner quotients of modular curves of prime level and genus 4, 5, 6 , 2021, Acta Arithmetica.

[47]  Jennifer S. Balakrishnan,et al.  Computing integral points on hyperelliptic curves using quadratic Chabauty , 2015, Math. Comput..

[48]  Netan Dogra,et al.  The local theory of unipotent Kummer maps and refined Selmer schemes , 2019, 1909.05734.

[49]  Barry Mazur,et al.  Rational points on modular curves , 1977 .

[50]  P. Berthelot,et al.  F-isocrystals and de Rham cohomology. I , 1983 .