Learning reference-enriched approach towards large scale active ontology alignment and integration

With the increasing number of ontologies being designed to represent and manage knowledge in all sorts of sectors, ontology alignment and integration become more and more important in aggregating intelligent efforts on homogenous and heterogeneous data. From the computational perspective, it is challenging due to the ubiquitous existence of diverse classifications of same data. In this paper, we propose an active ontology integration and alignment system, which plugs in expandable learning reference context pool. In the reference context pool, we have integrated WordNet, MeSH, and external curated mapping sources (ICD9 to SNOMEDCT) with an extension to injecting UMLS. The active ontology integration and alignment system takes account of not only subsumption tree but also directed acyclic graph underlying ontologies. It allows 1) finding exact one-to-one matching terms of pairwise ontologies, 2) finding inexact one-to-one term mappings, where two terms have at least a concept in common on basis of the lexical context, and 3) finding one-to-many concept mappings, where one concept can be lexically mapped to the combination of multiple exclusive concepts.

[1]  Bryan L. Roth,et al.  Polypharmacological Drugs: "Magic Shotguns" for Psychiatric Diseases , 2012 .

[2]  S. Lampel,et al.  The druggable genome: an update. , 2005, Drug discovery today.

[3]  G. von Heijne,et al.  Tissue-based map of the human proteome , 2015, Science.

[4]  B. Roth,et al.  Magic shotguns versus magic bullets: selectively non-selective drugs for mood disorders and schizophrenia , 2004, Nature Reviews Drug Discovery.

[5]  S. Rees,et al.  Principles of early drug discovery , 2011, British journal of pharmacology.

[6]  P. Shannon,et al.  Cytoscape: a software environment for integrated models of biomolecular interaction networks. , 2003, Genome research.

[7]  R. Solé,et al.  Data completeness—the Achilles heel of drug-target networks , 2008, Nature Biotechnology.

[8]  Stephan C. Schürer,et al.  Kinome-wide Activity Modeling from Diverse Public High-Quality Data Sets , 2013, J. Chem. Inf. Model..

[9]  George Papadatos,et al.  The ChEMBL bioactivity database: an update , 2013, Nucleic Acids Res..

[10]  Neil A. Ernst,et al.  Jambalaya: an interactive environment for exploring ontologies , 2002, IUI '02.

[11]  James A. Hendler,et al.  The Semantic Web" in Scientific American , 2001 .

[12]  Thorsten Liebig,et al.  OntoTrack: A semantic approach for ontology authoring , 2005, J. Web Semant..

[13]  William T. Loging Bioinformatics and Computational Biology in Drug Discovery and Development , 2016 .

[14]  Maria F. Sassano,et al.  Automated design of ligands to polypharmacological profiles , 2012, Nature.

[15]  Michael J. Keiser,et al.  Large Scale Prediction and Testing of Drug Activity on Side-Effect Targets , 2012, Nature.

[16]  Tudor I. Oprea,et al.  A comprehensive map of molecular drug targets , 2016, Nature Reviews Drug Discovery.

[17]  Rajarshi Guha,et al.  Drug target ontology to classify and integrate drug discovery data , 2017, J. Biomed. Semant..

[18]  Tudor I. Oprea,et al.  TIN-X: target importance and novelty explorer , 2017, Bioinform..

[19]  Kyle Kolaja Drug discovery: Computer model predicts side effects , 2012, Nature.

[20]  Flavius Frasincar,et al.  Using Hierarchical Edge Bundles to visualize complex ontologies in GLOW , 2012, SAC '12.

[21]  L. Garg,et al.  Drug Target Identification and Prioritization for Treatment of Ovine Foot Rot: An In Silico Approach , 2016, International journal of genomics.

[22]  Amar Koleti,et al.  GPCR ontology: development and application of a G protein-coupled receptor pharmacology knowledge framework , 2013, Bioinform..

[23]  J. Euzenat,et al.  Ontology Matching , 2007, Springer Berlin Heidelberg.

[24]  Stephen G. Kobourov,et al.  Force-Directed Drawing Algorithms , 2013, Handbook of Graph Drawing and Visualization.

[25]  Luca Pinzi,et al.  Computational polypharmacology comes of age , 2015, Front. Pharmacol..

[26]  Jérôme Euzenat,et al.  Ontology matching , 2007 .

[27]  Alessio Bosca,et al.  OntoSphere: more than a 3D ontology visualization tool , 2005, SWAP.

[28]  Peter W. Eklund,et al.  OntoRama: Browsing RDF ontologies using a hyperbolic-style browser , 2002, First International Symposium on Cyber Worlds, 2002. Proceedings..

[29]  Christine W. Chan,et al.  A tool for ontology visualizaiton in 3D graphics: Onto3DViz , 2010, CCECE 2010.

[30]  Francisco J. García-Peñalvo,et al.  Towards an ontology modeling tool. A validation in software engineering scenarios , 2012, Expert Syst. Appl..

[31]  Tudor I. Oprea,et al.  DrugCentral: online drug compendium , 2016, Nucleic Acids Res..

[32]  Margaret-Anne D. Storey,et al.  A Visualization Service for the Semantic Web , 2010, EKAW.

[33]  Maria F. Sassano,et al.  PRESTO-TANGO: an open-source resource for interrogation of the druggable human GPCR-ome , 2015, Nature Structural &Molecular Biology.

[34]  Martin Kuiper,et al.  OLSVis: an animated, interactive visual browser for bio-ontologies , 2011, BMC Bioinformatics.