Evolution of Vacuolar Pyrophosphatases and Vacuolar H^+-Atpases in Diatoms

To cope with changing environments and maintain optimal metabolic conditions, the control of the intracellular proton gradients has to be tightly regulated. Among the important proton pumps, vacuolar H^+-ATPases (V-ATPases) and H^+-translocating pyrophosphatases (H^+-PPases) were found to be involved in a number of physiological processes, and shown to be regulated at the expression level and to exhibit specific sub-cellular localizations. Studies of the role of these transporters are relatively scarce in algae and nearly absent in diatoms. Phylogenetic analyses disclose that diatoms, with both K^+-dependent and K^+-independent membrane integral pyrophosphatases, including proteins with high homology with a novel class of Na^+,H^+-PPases. Analyses of Phaeodactylum tricornutum EST libraries show that the gene putatively encoding a Na^+,H^+-PPase is over-expressed in urea adapted condition. Genome-wide investigations of the reservoir of V-ATPases encoding subunits demonstrate that diatoms display an expended number of genes encoding for the proteolipid subunits c of the V0 subcomplex. Preliminary localization studies show that one of V0-c subunits is associated to the endoplasmic reticulum membrane in P. tricornutum. Altogether our data highlight that the combination of comparative and functional genomic approaches reach promises to provide new information to the roles of membrane proton pumps in diatoms.

[1]  M. Nei,et al.  Molecular Evolutionary Genetics Analysis , 2007 .

[2]  Michael Forgac,et al.  Vacuolar ATPases: rotary proton pumps in physiology and pathophysiology , 2007, Nature Reviews Molecular Cell Biology.

[3]  T. Sakurai,et al.  Genome sequence of the palaeopolyploid soybean , 2010, Nature.

[4]  K. Schumacher,et al.  Plant proton pumps , 2007, FEBS letters.

[5]  A. Grossman,et al.  Stable nuclear transformation of the diatom , 1996 .

[6]  A. Fernie,et al.  Evolution and metabolic significance of the urea cycle in photosynthetic diatoms , 2011, Nature.

[7]  Nicolas Bremond,et al.  New tools for labeling silica in living diatoms. , 2008, The New phytologist.

[8]  T. Matsunaga,et al.  Establishment of a Genetic Transformation System for the Marine Pennate Diatom Fistulifera sp. Strain JPCC DA0580—A High Triglyceride Producer , 2012, Marine Biotechnology.

[9]  M. Maeshima,et al.  Vacuolar transporters and their essential role in plant metabolism. , 2006, Journal of experimental botany.

[10]  P. Kroth,et al.  Silencing of the Violaxanthin De-Epoxidase Gene in the Diatom Phaeodactylum tricornutum Reduces Diatoxanthin Synthesis and Non-Photochemical Quenching , 2012, PloS one.

[11]  K. Schumacher,et al.  A simple nomenclature for a complex proton pump: VHA genes encode the vacuolar H(+)-ATPase. , 2002, Trends in plant science.

[12]  Xiangzong Meng,et al.  Molecular cloning and characterization of a vacuolar H+-pyrophosphatase from Dunaliella viridis , 2011, Molecular Biology Reports.

[13]  Y. Araki,et al.  V‐ AND P‐TYPE Ca2+‐STIMULATED ATPases IN A CALCIFYING STRAIN OF PLEUROCHRYSIS SP. (HAPTOPHYCEAE) , 1998 .

[14]  D. Inzé,et al.  AUREOCHROME1a-Mediated Induction of the Diatom-Specific Cyclin dsCYC2 Controls the Onset of Cell Division in Diatoms (Phaeodactylum tricornutum)[W] , 2013, Plant Cell.

[15]  A. Serrano,et al.  A thermostable K+‐stimulated vacuolar‐type pyrophosphatase from the hyperthermophilic bacterium Thermotoga maritima , 2001, FEBS letters.

[16]  P. Kille,et al.  Intracellular localization and induction of a dynamic RNA-editing event of macro-algal V-ATPase subunit A (VHA-A) in response to copper. , 2014, Plant, cell & environment.

[17]  A. Goldman,et al.  The Structure and Catalytic Cycle of a Sodium-Pumping Pyrophosphatase , 2012, Science.

[18]  M. Nei,et al.  MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. , 2011, Molecular biology and evolution.

[19]  Debashish Bhattacharya,et al.  Horizontal gene transfer in chromalveolates , 2007, BMC Evolutionary Biology.

[20]  N. Saitou,et al.  The neighbor-joining method: a new method for reconstructing phylogenetic trees. , 1987, Molecular biology and evolution.

[21]  Govindjee,et al.  The Polyphosphate Bodies of Chlamydomonas reinhardtii Possess a Proton-pumping Pyrophosphatase and Are Similar to Acidocalcisomes* , 2001, The Journal of Biological Chemistry.

[22]  A. Falciatore,et al.  Gene silencing in the marine diatom Phaeodactylum tricornutum , 2009, Nucleic acids research.

[23]  T. Yoneda,et al.  The a3 Isoform Vacuolar Type H+-ATPase Promotes Distant Metastasis in the Mouse B16 Melanoma Cells , 2011, Molecular Cancer Research.

[24]  M. Forgac,et al.  Regulation and isoform function of the V-ATPases. , 2010, Biochemistry.

[25]  Alison G. Smith,et al.  Do Red and Green Make Brown?: Perspectives on Plastid Acquisitions within Chromalveolates , 2011, Eukaryotic Cell.

[26]  T. Cavalier-smith,et al.  Chloroplast Evolution: Secondary Symbiogenesis and Multiple Losses , 2002, Current Biology.

[27]  P. Keeling The endosymbiotic origin, diversification and fate of plastids , 2010, Philosophical Transactions of the Royal Society B: Biological Sciences.

[28]  J. Randerson,et al.  Primary production of the biosphere: integrating terrestrial and oceanic components , 1998, Science.

[29]  C. Hsiao,et al.  Crystal structure of a membrane-embedded H+-translocating pyrophosphatase , 2012, Nature.

[30]  Melanie Krebs,et al.  The V-ATPase: small cargo, large effects. , 2010, Current opinion in plant biology.

[31]  T. Kuroiwa,et al.  Identification of novel proteins in isolated polyphosphate vacuoles in the primitive red alga Cyanidioschyzon merolae. , 2009, The Plant journal : for cell and molecular biology.

[32]  U. Riebesell Photosynthesis: Carbon fix for a diatom , 2000, Nature.

[33]  A. Grossman,et al.  Transformation of the diatom Phaeodactylum tricornutum (Bacillariophyceae) with a variety of selectable marker and reporter genes , 2000 .

[34]  A. Baykov,et al.  Membrane-integral pyrophosphatase subfamily capable of translocating both Na+ and H+ , 2013, Proceedings of the National Academy of Sciences.

[35]  Paul G. Falkowski,et al.  The Evolution of Modern Eukaryotic Phytoplankton , 2004, Science.

[36]  V. Smetácek,et al.  Diatoms and the ocean carbon cycle. , 1999, Protist.

[37]  Ulrich C. Klostermeier,et al.  Genome and low-iron response of an oceanic diatom adapted to chronic iron limitation , 2012, Genome Biology.

[38]  J. Weissenbach,et al.  Digital expression profiling of novel diatom transcripts provides insight into their biological functions , 2010, Genome Biology.

[39]  Juan Du,et al.  Genome-wide survey of V-ATPase genes in Drosophila reveals a conserved renal phenotype for lethal alleles. , 2005, Physiological genomics.

[40]  J. Palmer,et al.  Horizontal gene transfer in eukaryotic evolution , 2008, Nature Reviews Genetics.

[41]  W. Swanson,et al.  Positive selection within a diatom species acts on putative protein interactions and transcriptional regulation. , 2013, Molecular biology and evolution.

[42]  T. Stevens,et al.  VMA11 and VMA16 Encode Second and Third Proteolipid Subunits of the Saccharomyces cerevisiae Vacuolar Membrane H+-ATPase* , 1997, The Journal of Biological Chemistry.

[43]  Juan Zhang,et al.  OVP1, a vacuolar H+-translocating inorganic pyrophosphatase (V-PPase), overexpression improved rice cold tolerance. , 2011, Plant physiology and biochemistry : PPB.

[44]  P. Kane The Where, When, and How of Organelle Acidification by the Yeast Vacuolar H+-ATPase , 2006, Microbiology and Molecular Biology Reviews.

[45]  M. Forgac,et al.  Function, structure and regulation of the vacuolar (H+)-ATPases. , 2008, Archives of biochemistry and biophysics.

[46]  A. Murphy,et al.  Arabidopsis H+-PPase AVP1 Regulates Auxin-Mediated Organ Development , 2005, Science.

[47]  A. Serrano,et al.  Proton-Pumping Inorganic Pyrophosphatases in Some Archaea and Other Extremophilic Prokaryotes , 2004, Journal of bioenergetics and biomembranes.

[48]  Nicholas H. Putnam,et al.  The Genome of the Diatom Thalassiosira Pseudonana: Ecology, Evolution, and Metabolism , 2004, Science.

[49]  M. Mandel,et al.  cDNA sequence encoding the 16-kDa proteolipid of chromaffin granules implies gene duplication in the evolution of H+-ATPases. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[50]  T. Stevens,et al.  Composition and assembly of the yeast vacuolar H(+)-ATPase complex. , 2000, The Journal of experimental biology.

[51]  Leszek Rychlewski,et al.  The Phaeodactylum genome reveals the evolutionary history of diatom genomes , 2008, Nature.

[52]  R. Lahti,et al.  A Lysine Substitute for K+ , 2002, The Journal of Biological Chemistry.

[53]  S. Ryu,et al.  Vacuolar (H+)-ATPases in Caenorhabditis elegans: what can we learn about giant H+ pumps from tiny worms? , 2010, Biochimica et biophysica acta.

[54]  A. Baykov,et al.  Na+-translocating Membrane Pyrophosphatases Are Widespread in the Microbial World and Evolutionarily Precede H+-translocating Pyrophosphatases* , 2011, Journal of Biological Chemistry.

[55]  Nicole Poulsen,et al.  MOLECULAR GENETIC MANIPULATION OF THE DIATOM THALASSIOSIRA PSEUDONANA (BACILLARIOPHYCEAE) 1 , 2006 .

[56]  A. Grossman,et al.  In vivo characterization of diatom multipartite plastid targeting signals , 2002, Journal of Cell Science.

[57]  B. Becker,et al.  Inhibition of contractile vacuole function by brefeldin A. , 2005, Plant & cell physiology.

[58]  Stéphane Douady,et al.  Plasticity and robustness of pattern formation in the model diatom Phaeodactylum tricornutum. , 2009, The New phytologist.

[59]  Albert J R Heck,et al.  Stoichiometry of the Peripheral Stalk Subunits E and G of Yeast V1-ATPase Determined by Mass Spectrometry* , 2008, Journal of Biological Chemistry.

[60]  Yoshiyuki Tanaka,et al.  Effects of ABA, auxin, and gibberellin on the expression of genes for vacuolar H+ -inorganic pyrophosphatase, H+ -ATPase subunit A, and Na+/H+ antiporter in barley. , 2006, Plant physiology and biochemistry : PPB.

[61]  Wei-dong Yang,et al.  Transformation of diatom Phaeodactylum tricornutum by electroporation and establishment of inducible selection marker. , 2012, BioTechniques.

[62]  P. Corstjens,et al.  A COCCOLITHOPHORID CALCIFYING VESICLE WITH A VACUOLAR‐TYPE ATPASE PROTON PUMP: CLONING AND IMMUNOLOCALIZATION OF THE V0 SUBUNIT c , 2001 .

[63]  William R. Taylor,et al.  The rapid generation of mutation data matrices from protein sequences , 1992, Comput. Appl. Biosci..

[64]  M. Miyahara,et al.  Highly Efficient Transformation of the Diatom Phaeodactylum tricornutum by Multi-Pulse Electroporation , 2013, Bioscience, biotechnology, and biochemistry.

[65]  M. Hoppenrath,et al.  Localization of Pyrophosphatase and V-ATPase in Chlamydomonas reinhardtii , 1998 .

[66]  K. Yokoyama,et al.  Rotation, Structure, and Classification of Prokaryotic V-ATPase , 2005, Journal of bioenergetics and biomembranes.

[67]  A. Baykov,et al.  Na+-pyrophosphatase: a novel primary sodium pump. , 2007, Biochemistry.

[68]  M. Maeshima,et al.  Quantification, organ-specific accumulation and intracellular localization of type II H(+)-pyrophosphatase in Arabidopsis thaliana. , 2010, Plant & cell physiology.