Computation of Quasi-Periodic Normally Hyperbolic Invariant Tori: Algorithms, Numerical Explorations and Mechanisms of Breakdown
暂无分享,去创建一个
[1] C. Simó,et al. On quasi-periodic perturbations of elliptic equilibrium points , 1996 .
[2] Juergen Kurths,et al. Multiband strange nonchaotic attractors in quasiperiodically forced systems , 1996 .
[3] Àngel Jorba,et al. On the reducibility of linear differential equations with quasiperiodic coefficients , 1992 .
[4] K. Kaneko. Fractalization of Torus , 1984 .
[5] R. Llave,et al. The parameterization method for invariant manifolds. I: Manifolds associated to non-resonant subspaces , 2003 .
[6] J. Bourgain. On Melnikov’s persistency problem , 1997 .
[7] J. C. Tatjer,et al. A mechanism for the fractalization of invariant curves in quasi-periodically forced 1-D maps , 2008 .
[8] Charles L. Epstein,et al. How well does the finite Fourier transform approximate the Fourier transform? , 2005 .
[9] G. Vegter,et al. Algorithms for computing normally hyperbolic invariant manifolds , 1997 .
[10] Jordi-Lluís Figueras,et al. Rigorous Computer-Assisted Application of KAM Theory: A Modern Approach , 2016, Found. Comput. Math..
[11] Rafael de la Llave,et al. A Parameterization Method for the Computation of Invariant Tori and Their Whiskers in Quasi-Periodic Maps: Explorations and Mechanisms for the Breakdown of Hyperbolicity , 2007, SIAM J. Appl. Dyn. Syst..
[12] Àngel Jorba,et al. On the vertical families of two-dimensional tori near the triangular points of the Bicircular problem , 2000 .
[13] Jürgen Moser,et al. Convergent series expansions for quasi-periodic motions , 1967 .
[14] Angel Jorba,et al. Old and New Results on Strange Nonchaotic attractors , 2007, Int. J. Bifurc. Chaos.
[15] Fiberwise hyperbolic invariant tori in quasiperiodically forced skew product systems , 2011 .
[16] J. Moser. A rapidly convergent iteration method and non-linear partial differential equations - I , 1966 .
[17] Jürgen Moser,et al. A rapidly convergent iteration method and non-linear differential equations = II , 1966 .
[18] Àngel Jorba,et al. Numerical computation of the normal behaviour of invariant curves of n-dimensional maps , 2001 .
[19] Marta Canadell,et al. Computation of Quasiperiodic Normally Hyperbolic Invariant Tori: Rigorous Results , 2017, J. Nonlinear Sci..
[20] À. Haro,et al. Strange nonchaotic attractors in Harper maps. , 2005, Chaos.
[21] George Huitema,et al. Quasi-Periodic Motions in Families of Dynamical Systems: Order amidst Chaos , 2002 .
[22] R. Llave,et al. Fast numerical computation of quasi-periodic equilibrium states in 1D statistical mechanics, including twist maps , 2009 .
[23] Jordi-Lluís Figueras,et al. Collision of invariant bundles of quasi-periodic attractors in the dissipative standard map. , 2012, Chaos.
[24] Rafael de la Llave,et al. A parameterization method for the computation of invariant tori andtheir whiskers in quasi-periodic maps: Numerical algorithms , 2006 .
[25] R. Llave,et al. Fast iteration of cocyles over rotations and Computation of hyperbolic bundles , 2011, 1102.2461.
[26] Angel Jorba,et al. On the Computation of Reducible Invariant Tori on a Parallel Computer , 2009, SIAM J. Appl. Dyn. Syst..
[27] Hendrik Broer,et al. Quasi-periodic bifurcations of invariant circles in low-dimensional dissipative dynamical systems , 2011 .
[28] Frank Schilder,et al. Computing Arnol′d tongue scenarios , 2007, J. Comput. Phys..
[29] A. Chenciner,et al. Bifurcations de tores invariants , 1979 .
[30] A. Chenciner,et al. Persistance et bifurcation de tores invariants , 1979 .
[31] A. Osbaldestin,et al. Smooth and nonsmooth dependence of Lyapunov vectors upon the angle variable on a torus in the context of torus-doubling transitions in the quasiperiodically forced Hénon map. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.
[32] Frank Schilder,et al. Continuation of Quasi-periodic Invariant Tori , 2005, SIAM J. Appl. Dyn. Syst..
[33] J. Yorke,et al. Strange attractors that are not chaotic , 1984 .
[34] R. Llave,et al. Differentiability at the Tip of Arnold Tongues for Diophantine Rotations: Numerical Studies and Renormalization Group Explanations , 2011 .
[35] J. Mondelo,et al. The parameterization method for invariant manifolds , 2016 .
[36] Kaneko,et al. Fractalization of a torus as a strange nonchaotic attractor. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[37] R. de la Llave,et al. Manifolds on the verge of a hyperbolicity breakdown. , 2006, Chaos.