Computation of Quasi-Periodic Normally Hyperbolic Invariant Tori: Algorithms, Numerical Explorations and Mechanisms of Breakdown

We present several algorithms for computing normally hyperbolic invariant tori carrying quasi-periodic motion of a fixed frequency in families of dynamical systems. The algorithms are based on a KAM scheme presented in Canadell and Haro (J Nonlinear Sci, 2016. doi:10.1007/s00332-017-9389-y), to find the parameterization of the torus with prescribed dynamics by detuning parameters of the model. The algorithms use different hyperbolicity and reducibility properties and, in particular, compute also the invariant bundles and Floquet transformations. We implement these methods in several 2-parameter families of dynamical systems, to compute quasi-periodic arcs, that is, the parameters for which 1D normally hyperbolic invariant tori with a given fixed frequency do exist. The implementation lets us to perform the continuations up to the tip of the quasi-periodic arcs, for which the invariant curves break down. Three different mechanisms of breakdown are analyzed, using several observables, leading to several conjectures.

[1]  C. Simó,et al.  On quasi-periodic perturbations of elliptic equilibrium points , 1996 .

[2]  Juergen Kurths,et al.  Multiband strange nonchaotic attractors in quasiperiodically forced systems , 1996 .

[3]  Àngel Jorba,et al.  On the reducibility of linear differential equations with quasiperiodic coefficients , 1992 .

[4]  K. Kaneko Fractalization of Torus , 1984 .

[5]  R. Llave,et al.  The parameterization method for invariant manifolds. I: Manifolds associated to non-resonant subspaces , 2003 .

[6]  J. Bourgain On Melnikov’s persistency problem , 1997 .

[7]  J. C. Tatjer,et al.  A mechanism for the fractalization of invariant curves in quasi-periodically forced 1-D maps , 2008 .

[8]  Charles L. Epstein,et al.  How well does the finite Fourier transform approximate the Fourier transform? , 2005 .

[9]  G. Vegter,et al.  Algorithms for computing normally hyperbolic invariant manifolds , 1997 .

[10]  Jordi-Lluís Figueras,et al.  Rigorous Computer-Assisted Application of KAM Theory: A Modern Approach , 2016, Found. Comput. Math..

[11]  Rafael de la Llave,et al.  A Parameterization Method for the Computation of Invariant Tori and Their Whiskers in Quasi-Periodic Maps: Explorations and Mechanisms for the Breakdown of Hyperbolicity , 2007, SIAM J. Appl. Dyn. Syst..

[12]  Àngel Jorba,et al.  On the vertical families of two-dimensional tori near the triangular points of the Bicircular problem , 2000 .

[13]  Jürgen Moser,et al.  Convergent series expansions for quasi-periodic motions , 1967 .

[14]  Angel Jorba,et al.  Old and New Results on Strange Nonchaotic attractors , 2007, Int. J. Bifurc. Chaos.

[15]  Fiberwise hyperbolic invariant tori in quasiperiodically forced skew product systems , 2011 .

[16]  J. Moser A rapidly convergent iteration method and non-linear partial differential equations - I , 1966 .

[17]  Jürgen Moser,et al.  A rapidly convergent iteration method and non-linear differential equations = II , 1966 .

[18]  Àngel Jorba,et al.  Numerical computation of the normal behaviour of invariant curves of n-dimensional maps , 2001 .

[19]  Marta Canadell,et al.  Computation of Quasiperiodic Normally Hyperbolic Invariant Tori: Rigorous Results , 2017, J. Nonlinear Sci..

[20]  À. Haro,et al.  Strange nonchaotic attractors in Harper maps. , 2005, Chaos.

[21]  George Huitema,et al.  Quasi-Periodic Motions in Families of Dynamical Systems: Order amidst Chaos , 2002 .

[22]  R. Llave,et al.  Fast numerical computation of quasi-periodic equilibrium states in 1D statistical mechanics, including twist maps , 2009 .

[23]  Jordi-Lluís Figueras,et al.  Collision of invariant bundles of quasi-periodic attractors in the dissipative standard map. , 2012, Chaos.

[24]  Rafael de la Llave,et al.  A parameterization method for the computation of invariant tori andtheir whiskers in quasi-periodic maps: Numerical algorithms , 2006 .

[25]  R. Llave,et al.  Fast iteration of cocyles over rotations and Computation of hyperbolic bundles , 2011, 1102.2461.

[26]  Angel Jorba,et al.  On the Computation of Reducible Invariant Tori on a Parallel Computer , 2009, SIAM J. Appl. Dyn. Syst..

[27]  Hendrik Broer,et al.  Quasi-periodic bifurcations of invariant circles in low-dimensional dissipative dynamical systems , 2011 .

[28]  Frank Schilder,et al.  Computing Arnol′d tongue scenarios , 2007, J. Comput. Phys..

[29]  A. Chenciner,et al.  Bifurcations de tores invariants , 1979 .

[30]  A. Chenciner,et al.  Persistance et bifurcation de tores invariants , 1979 .

[31]  A. Osbaldestin,et al.  Smooth and nonsmooth dependence of Lyapunov vectors upon the angle variable on a torus in the context of torus-doubling transitions in the quasiperiodically forced Hénon map. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[32]  Frank Schilder,et al.  Continuation of Quasi-periodic Invariant Tori , 2005, SIAM J. Appl. Dyn. Syst..

[33]  J. Yorke,et al.  Strange attractors that are not chaotic , 1984 .

[34]  R. Llave,et al.  Differentiability at the Tip of Arnold Tongues for Diophantine Rotations: Numerical Studies and Renormalization Group Explanations , 2011 .

[35]  J. Mondelo,et al.  The parameterization method for invariant manifolds , 2016 .

[36]  Kaneko,et al.  Fractalization of a torus as a strange nonchaotic attractor. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[37]  R. de la Llave,et al.  Manifolds on the verge of a hyperbolicity breakdown. , 2006, Chaos.