Enhancing isogeometric analysis by a finite element-based local refinement strategy

Abstract While isogeometric analysis has the potential to close the gap between computer aided design and finite element methods, the underlying structure of NURBS (non-uniform rational B -splines) is a weakness when it comes to local refinement. We propose a hybrid method that combines a globally C 1 -continuous, piecewise polynomial finite element basis with rational NURBS-mappings in such a way that an isoparametric setting and exact geometry representation are preserved. We define this basis over T -meshes with a hierarchical structure that allows locally restricted refinement. Combined with a state-of-the-art a posteriori error estimator, we present an adaptive refinement procedure. This concept is successfully demonstrated with the Laplace equation, advection–diffusion problems and linear elasticity problems.

[1]  Liping Liu THEORY OF ELASTICITY , 2012 .

[2]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[3]  John A. Evans,et al.  Robustness of isogeometric structural discretizations under severe mesh distortion , 2010 .

[4]  T. Hughes,et al.  ISOGEOMETRIC ANALYSIS: APPROXIMATION, STABILITY AND ERROR ESTIMATES FOR h-REFINED MESHES , 2006 .

[5]  Jiansong Deng,et al.  Polynomial splines over hierarchical T-meshes , 2008, Graph. Model..

[6]  John A. Evans,et al.  Isogeometric analysis using T-splines , 2010 .

[7]  G. Sangalli,et al.  A fully ''locking-free'' isogeometric approach for plane linear elasticity problems: A stream function formulation , 2007 .

[8]  Richard H. Gallagher,et al.  Finite elements in fluids , 1975 .

[9]  G. Sangalli,et al.  Isogeometric analysis in electromagnetics: B-splines approximation , 2010 .

[10]  Carsten Carstensen,et al.  Some remarks on the history and future of averaging techniques in a posteriori finite element error analysis , 2004 .

[11]  Sung-Kie Youn,et al.  T‐spline finite element method for the analysis of shell structures , 2009 .

[12]  M. Scott,et al.  On the Nesting Behavior of T-splines , 2011 .

[13]  Azzeddine Soulaïmani Finite elements for fluids , 1998 .

[14]  N. I. Muschelischwili Einige grundaufgaben zur mathematischen elastizitätstheorie , 1971 .

[15]  H. Nguyen-Xuan,et al.  Isogeometric analysis using polynomial splines over hierarchical T-meshes for two-dimensional elastic solids , 2011 .

[16]  Alessandro Reali,et al.  Isogeometric Analysis of Structural Vibrations , 2006 .

[17]  N. I. Muskhelishvili Einige Grundaufgaben zur mathematischen Elastizitätstheorie , 1971 .

[18]  Nicholas S. North,et al.  T-spline simplification and local refinement , 2004, SIGGRAPH 2004.

[19]  John E. Howland,et al.  Computer graphics , 1990, IEEE Potentials.

[20]  T. Hughes,et al.  Efficient quadrature for NURBS-based isogeometric analysis , 2010 .

[21]  Satya N. Atluri,et al.  A New Implementation of the Meshless Finite Volume Method, Through the MLPG "Mixed" Approach , 2004 .

[22]  Victor M. Calo,et al.  The role of continuity in residual-based variational multiscale modeling of turbulence , 2007 .

[23]  Manfred Bischoff,et al.  Numerical efficiency, locking and unlocking of NURBS finite elements , 2010 .

[24]  T. Hughes,et al.  Local refinement of analysis-suitable T-splines , 2012 .

[25]  Alessandro Reali,et al.  Studies of Refinement and Continuity in Isogeometric Structural Analysis (Preprint) , 2007 .

[26]  Paul Steinmann,et al.  Isogeometric analysis of 2D gradient elasticity , 2011 .

[27]  Tom Lyche,et al.  T-spline simplification and local refinement , 2004, ACM Trans. Graph..

[28]  Jiansong Deng,et al.  Dimensions of spline spaces over T-meshes , 2006 .

[29]  Bruce T. Murray,et al.  Approximation of Cahn–Hilliard diffuse interface models using parallel adaptive mesh refinement and coarsening with C1 elements , 2008 .

[30]  G. Sangalli,et al.  Linear independence of the T-spline blending functions associated with some particular T-meshes , 2010 .

[31]  Randolph E. Bank,et al.  A posteriori error estimates based on hierarchical bases , 1993 .

[32]  Thomas J. R. Hughes,et al.  Patient-Specific Vascular NURBS Modeling for Isogeometric Analysis of Blood Flow , 2007, IMR.

[33]  T. Hughes,et al.  Isogeometric Fluid–structure Interaction Analysis with Applications to Arterial Blood Flow , 2006 .

[34]  Hyun-Jung Kim,et al.  Isogeometric analysis for trimmed CAD surfaces , 2009 .

[35]  David R. Forsey,et al.  Hierarchical B-spline refinement , 1988, SIGGRAPH.

[36]  B. Simeon,et al.  Adaptive isogeometric analysis by local h-refinement with T-splines , 2010 .

[37]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[38]  Ahmad H. Nasri,et al.  T-splines and T-NURCCs , 2003, ACM Trans. Graph..

[39]  John Hart,et al.  ACM Transactions on Graphics , 2004, SIGGRAPH 2004.

[40]  Carla Manni,et al.  Generalized B-splines as a tool in Isogeometric Analysis , 2011 .