A superb mechanical behavior of newly developed lightweight and ductile Al0.5Ti2Nb1Zr1Wx refractory high entropy alloy via nano-precipitates and dislocations induced-deformation

[1]  Kexiang Zhang,et al.  Development of the γ′ phase strengthened high-temperature high entropy alloys with excellent mechanical properties , 2022, Materials & Design.

[2]  G. Yasin,et al.  Parallel preparation of multi-component alloys with composition gradient distribution and their nonlinear microstructures and mechanical properties , 2022, Journal of Alloys and Compounds.

[3]  W. Fu,et al.  A new strategy to overcome the strength-ductility trade off of high entropy alloy , 2022, Scripta Materialia.

[4]  W. Wang,et al.  Effect of Co on phase stability and mechanical behavior of CoxCrFeNiMnAl0.3 high entropy alloys with micro/nano hierarchical structure , 2022, Materials & Design.

[5]  Yuanbo T. Tang,et al.  Achieving high strength and ductility in nitrogen-doped refractory high-entropy alloys , 2022, Materials & Design.

[6]  A. Chiba,et al.  Synergetic strengthening in HfMoNbTaTi refractory high-entropy alloy via disordered nanoscale phase and semicoherent refractory particle , 2021, Materials & Design.

[7]  P. Liaw,et al.  Ultrastrong and ductile BCC high-entropy alloys with low-density via dislocation regulation and nanoprecipitates , 2021, Journal of Materials Science & Technology.

[8]  Haifeng Zhang,et al.  A ductile Nb40Ti25Al15V10Ta5Hf3W2 refractory high entropy alloy with high specific strength for high-temperature applications , 2021, Materials Science and Engineering: A.

[9]  Yangwei Wang,et al.  Precipitation behaviour in an Al-Zn-Mg-Cu alloy subjected to high strain rate compression tests , 2021 .

[10]  Junyang He,et al.  The mechanical and oxidation properties of novel B2-ordered Ti2ZrHf0.5VNb0.5Alx refractory high-entropy alloys , 2021, Materials Characterization.

[11]  Yan Chen,et al.  High-throughput design of high-performance lightweight high-entropy alloys , 2021, Nature Communications.

[12]  A. Shapeev,et al.  B2 ordering in body-centered-cubic AlNbTiV refractory high-entropy alloys , 2021, Physical Review Materials.

[13]  Tao Wang,et al.  Ductile W0.4MoNbxTaTi refractory high-entropy alloys with excellent elevated temperature strength , 2021, Materials Letters.

[14]  Haifeng Zhang,et al.  Ductile Ti1.5ZrNbAl0.3 refractory high entropy alloy with high specific strength , 2021 .

[15]  F. Schäfer,et al.  Magnetic phases in superconducting, polycrystalline bulk FeSe samples , 2021 .

[16]  Yangwei Wang,et al.  The effect of strain rates on the microstructure and the mechanical properties of an over-aged Al-Zn-Mg-Cu alloy , 2020 .

[17]  Shijian Zheng,et al.  High-strength and high-ductility AlCoCrFeNi2.1 eutectic high-entropy alloy achieved via precipitation strengthening in a heterogeneous structure , 2020 .

[18]  C. Yiwen,et al.  A single-phase V0.5Nb0.5ZrTi refractory high-entropy alloy with outstanding tensile properties , 2020 .

[19]  K. Chaput,et al.  Effect of Fe additions on the microstructure and properties of Nb-Mo-Ti alloys , 2020, International Journal of Refractory Metals and Hard Materials.

[20]  Haifeng Zhang,et al.  Effects of Al addition on the microstructures and properties of MoNbTaTiV refractory high entropy alloy , 2020, Materials Science and Engineering: A.

[21]  Yufeng Zheng,et al.  Phase stability and microstructure evolution in a ductile refractory high entropy alloy Al10Nb15Ta5Ti30Zr40 , 2020 .

[22]  Yufeng Zheng,et al.  Phase inversion in a two-phase, BCC+B2, refractory high entropy alloy , 2020 .

[23]  R. Banerjee,et al.  Temperature dependent deformation behavior and strengthening mechanisms in a low density refractory high entropy alloy Al10Nb15Ta5Ti30Zr40 , 2020, Materialia.

[24]  N. Tsuji,et al.  Unique high-temperature deformation dominated by grain boundary sliding in heterogeneous necklace structure formed by dynamic recrystallization in HfNbTaTiZr BCC refractory high entropy alloy , 2020 .

[25]  C. Tasan,et al.  Natural-mixing guided design of refractory high-entropy alloys with as-cast tensile ductility , 2019, Nature Materials.

[26]  N. Stepanov,et al.  Gum-like mechanical behavior of a partially ordered Al5Nb24Ti40V5Zr26 high entropy alloy , 2020 .

[27]  N. Stepanov,et al.  Microstructure evolution of a novel low-density Ti–Cr–Nb–V refractory high entropy alloy during cold rolling and subsequent annealing , 2019 .

[28]  S. Seils,et al.  Crystallographic ordering in a series of Al-containing refractory high entropy alloys Ta–Nb–Mo–Cr–Ti–Al , 2019, Acta Materialia.

[29]  M. Mumtaz,et al.  Study of tungsten oxide effect on the performance of BaTiO3 ceramics , 2019, Journal of Materials Science: Materials in Electronics.

[30]  Dierk Raabe,et al.  High-entropy alloys , 2019, Nature Reviews Materials.

[31]  C. Yiwen,et al.  Design of novel low-density refractory high entropy alloys for high-temperature applications , 2019, Materials Science and Engineering: A.

[32]  M. Mumtaz,et al.  Improvement of flux pinning ability by tungsten oxide nanoparticles added in YBa2Cu3Oy superconductor , 2019, Ceramics International.

[33]  Jien-Wei Yeh,et al.  Effects of Mo, Nb, Ta, Ti, and Zr on Mechanical Properties of Equiatomic Hf-Mo-Nb-Ta-Ti-Zr Alloys , 2018, Entropy.

[34]  Dapeng Xu,et al.  A review on fundamental of high entropy alloys with promising high–temperature properties , 2018, Journal of Alloys and Compounds.

[35]  R. Banerjee,et al.  Phase stability as a function of temperature in a refractory high-entropy alloy , 2018, Journal of Materials Research.

[36]  Daniel B. Miracle,et al.  Development and exploration of refractory high entropy alloys—A review , 2018, Journal of Materials Research.

[37]  Daniel B. Miracle,et al.  Compositional variation effects on the microstructure and properties of a refractory high-entropy superalloy AlMo0.5NbTa0.5TiZr , 2018 .

[38]  Liang Wang,et al.  Composition design of high entropy alloys using the valence electron concentration to balance strength and ductility , 2018 .

[39]  Nikita Stepanov,et al.  Structure and mechanical properties of B2 ordered refractory AlNbTiVZrx (x = 0–1.5) high-entropy alloys , 2017 .

[40]  M. Gibson,et al.  A lightweight single-phase AlTiVCr compositionally complex alloy , 2017 .

[41]  C. Persson,et al.  Alloy design for intrinsically ductile refractory high-entropy alloys , 2016 .

[42]  N. Stepanov,et al.  Structure and mechanical properties of the AlCrxNbTiV (x = 0, 0.5, 1, 1.5) high entropy alloys , 2015 .

[43]  Nikita Stepanov,et al.  Structure and mechanical properties of a light-weight AlNbTiV high entropy alloy , 2015 .

[44]  Tao Wang,et al.  A refractory Hf25Nb25Ti25Zr25 high-entropy alloy with excellent structural stability and tensile properties , 2014 .

[45]  Daniel B. Miracle,et al.  Microstructure and Properties of Aluminum-Containing Refractory High-Entropy Alloys , 2014, JOM.

[46]  J. Yeh,et al.  High-Entropy Alloys: A Critical Review , 2014 .

[47]  Oleg N. Senkov,et al.  Effect of aluminum on the microstructure and properties of two refractory high-entropy alloys , 2014 .

[48]  K. Dahmen,et al.  Microstructures and properties of high-entropy alloys , 2014 .

[49]  J. Jonas,et al.  Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions , 2014 .

[50]  C. Woodward,et al.  Mechanical properties of low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system , 2013 .

[51]  C. Woodward,et al.  Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy , 2012, Journal of Materials Science.

[52]  C. Woodward,et al.  Microstructure and Room Temperature Properties of a High-Entropy TaNbHfZrTi Alloy (Postprint) , 2011 .

[53]  C. Liu,et al.  Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys , 2011 .

[54]  D. Miracle,et al.  Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys , 2011 .

[55]  P. Liaw,et al.  Refractory high-entropy alloys , 2010 .

[56]  T. Shun,et al.  Nanostructured High‐Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes , 2004 .