Introduction: Theory and “Technical” Aspects of Monte Carlo Simulations

An outline is given of the physical problems which can be treated by Monte Carlo sampling and which are described in the later chapters of this book. Then the theoretical background is described for the application of this technique to calculate statistical ensemble averages of classical interacting many-body systems. The practical realization of the method is discussed, as well as its limitations due to finite time averaging, finite size and boundary effects, etc. It is shown how to extract meaningful information from the “raw data” of such a “computer experiment”. The stochastic simulation of kinetic processes is also treated, with particular emphasis on the interpretation of the results near phase transitions in the system. Finally some approximative variants of the technique are discussed which might become useful to simulate critical phenomena.

[1]  Peter Reynolds,et al.  Percolation by position-space renormalisation group with large cells , 1978 .

[2]  Z. Rácz,et al.  Application of the Monte Carlo method for evaluating the Niemeijer-van Leeuwen cumulant expansion , 1977 .

[3]  K. Binder,et al.  Dynamic properties of the Monte Carlo method in statistical mechanics , 1973 .

[4]  L. Onsager Crystal statistics. I. A two-dimensional model with an order-disorder transition , 1944 .

[5]  Kurt Binder,et al.  Monte Carlo computer experiments on critical phenomena and metastable states , 1974 .

[6]  S. M. Ermakow Die Monte-Carlo-Methode und verwandte Fragen , 1975 .

[7]  Wolfgang Kinzel,et al.  New real-space renormalization techniques and their application to models of various spin and space dimensionalities , 1979 .

[8]  H. E. Stanley,et al.  Possibility of a Phase Transition for the Two-Dimensional Heisenberg Model , 1966 .

[9]  D. I. Golenko,et al.  The Monte Carlo Method. , 1967 .

[10]  D. Landau,et al.  Finite-size behavior of the simple-cubic Ising lattice , 1976 .

[11]  Z. Alexandrowicz Stochastic Models for the Statistical Description of Lattice Systems , 1971 .

[12]  David A. Owen,et al.  Matrix Pade approximants and the Bethe-Salpeter equation of the N-N interaction , 1976 .

[13]  Jean-Pierre Hansen,et al.  Phase Transition of the Lennard-Jones System. II. High-Temperature Limit , 1970 .

[14]  I. Z. Fisher,et al.  Reviews of Topical Problems: Applications of the Monte Carlo Method in Statistical Physics , 1960 .

[15]  D. N. Card,et al.  Monte Carlo Estimation of the Free Energy by Multistage Sampling , 1972 .

[16]  Hagai Meirovitch,et al.  The stochastic models method applied to the critical behavior of Ising lattices , 1977 .

[17]  H. Bethe Statistical Theory of Superlattices , 1935 .

[18]  H. C. Bolton,et al.  Monte Carlo studies of the kinetic Ising model , 1976 .

[19]  P. Flinn,et al.  Monte Carlo Calculation of the Order-Disorder Transformation in the Body-Centered Cubic Lattice , 1961 .

[20]  Michael E. Fisher,et al.  Scaling Theory for Finite-Size Effects in the Critical Region , 1972 .

[21]  J. A. Swanson,et al.  Frequency Factors in the Thermally Activated Process , 1961 .

[22]  H. Müller-Krumbhaar,et al.  A „self consistent” monte carlo method for the heisenberg ferromagnet , 1972 .

[23]  P. Hohenberg,et al.  Theory of Dynamic Critical Phenomena , 1977 .

[24]  L. Verlet,et al.  Perturbation Theory and Equation of State for Fluids , 1969 .

[25]  M. Fisher The theory of equilibrium critical phenomena , 1967 .

[26]  Robert Zwanzig,et al.  STATISTICAL ERROR DUE TO FINITE TIME AVERAGING IN COMPUTER EXPERIMENTS. , 1969 .

[27]  Kurt Binder,et al.  Evidence for vortex formation in Monte Carlo studies of the two-dimensional XY-model , 1977 .

[28]  E. Ising Beitrag zur Theorie des Ferromagnetismus , 1925 .

[29]  Kurt Binder,et al.  Monte Carlo Investigation of Dynamic Critical Phenomena in the Two-Dimensional Kinetic Ising Model , 1973 .

[30]  G. S. Rushbrooke,et al.  On the Curie points and high temperature susceptibilities of Heisenberg model ferromagnetics , 1958 .

[31]  G. Torrie,et al.  Monte Carlo free energy estimates using non-Boltzmann sampling: Application to the sub-critical Lennard-Jones fluid , 1974 .

[32]  Kurt Binder,et al.  Phase diagrams and multicritical behavior of a three-dimensional anisotropic Heisenberg antiferromagnet , 1978 .

[33]  Giovanni Ciccotti,et al.  Canonical ensemble and nonequilibrium states by molecular dynamics , 1980 .

[34]  Kurt Binder,et al.  Dynamics of First Order Phase Transitions , 1975 .

[35]  Chen Ning Yang,et al.  The Spontaneous Magnetization of a Two-Dimensional Ising Model , 1952 .

[36]  K. Binder,et al.  Investigation of metastable states and nucleation in the kinetic Ising model , 1974 .

[37]  Michael E. Fisher,et al.  Interfacial, Boundary, and Size Effects at Critical Points , 1967 .

[38]  N. Mermin,et al.  Absence of Ferromagnetism or Antiferromagnetism in One- or Two-Dimensional Isotropic Heisenberg Models , 1966 .

[39]  Tormod Riste,et al.  Fluctuations, Instabilities, and Phase Transitions , 1975 .

[40]  K. Binder THEORIES OF STATIC AND DYNAMIC CRITICAL PHENOMENA AT ORDER-DISORDER AND UNMIXING TRANSITIONS , 1977 .

[41]  Dwayne A. Chesnut,et al.  Monte Carlo Procedure for Statistical Mechanical Calculations in a Grand Canonical Ensemble of Lattice Systems , 1963 .

[42]  L. Hove,et al.  Time-Dependent Correlations between Spins and Neutron Scattering in Ferromagnetic Crystals , 1954 .

[43]  S. Kirkpatrick,et al.  Spin waves in random ferromagnets , 1977 .

[44]  R. D. Lowde,et al.  Magnetic correlations and neutron scattering , 1968 .

[45]  Geoffrey R. Golner,et al.  Investigation of the Potts Model Using Renormalization-Group Techniques , 1973 .

[46]  D. Thouless,et al.  Long range order and metastability in two dimensional solids and superfluids. (Application of dislocation theory) , 1972 .

[47]  W. Fickett,et al.  Application of the Monte Carlo Method to the Lattice‐Gas Model. I. Two‐Dimensional Triangular Lattice , 1959 .

[48]  Kurt Binder,et al.  Critical properties of the two-dimensional anisotropic Heisenberg model , 1976 .

[49]  Ian R. McDonald,et al.  Machine Calculation of Thermodynamic Properties of a Simple Fluid at Supercritical Temperatures , 1967 .

[50]  K. Binder Statistical mechanics of finite three-dimensional Ising models , 1972 .

[51]  R. Glauber Time‐Dependent Statistics of the Ising Model , 1963 .

[52]  David P. Landau,et al.  Finite-size behavior of the Ising square lattice , 1976 .

[53]  Z. Rácz,et al.  Nonlinear relaxation near the critical point: Molecular-field and scaling theory , 1976 .

[54]  R. E. Watson,et al.  Classical Heisenberg Magnet in Two Dimensions , 1970 .

[55]  J. Felsteiner,et al.  Kadanoff block transformation by the Monte Carlo technique , 1977 .

[56]  George G. Lowry Markov chains and Monte Carlo calculations in polymer science , 1970 .

[57]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[58]  J. Hammersley,et al.  Monte Carlo Methods , 1965 .

[59]  M. Suzuki,et al.  Critical Slowing Down in the Kinetic Ising Model , 1969 .

[60]  H. Friedrich,et al.  Ermakow, S. M., Die Monte-Carlo-Methode und verwandte Fragen. 291 S., Berlin 1975. VEB Deutscher Verlag der Wissenschaften. M 62,- , 1976 .

[61]  E. Teller,et al.  Monte Carlo Study of a One‐Component Plasma. I , 1966 .

[62]  J. Doob Stochastic processes , 1953 .

[63]  Z. Alexandrowicz,et al.  Stochastic Model for a Fluid of Hard Cubes with Attractive Potential , 1972 .

[64]  John S. Rowlinson,et al.  Physics of simple liquids , 1968 .

[65]  Charles H. Bennett,et al.  Efficient estimation of free energy differences from Monte Carlo data , 1976 .

[66]  David P. Landau,et al.  Tricritical relaxation in an Ising-Glauber model with competing interactions , 1976 .

[67]  Claudio Teitelboim Hamiltonian Gravitation: Are Constraints Redundant? , 1973 .

[68]  Kurt Binder,et al.  Theory for the dynamics of "clusters." II. Critical diffusion in binary systems and the kinetics of phase separation , 1977 .

[69]  N. R. Werthamer,et al.  Properties of Crystalline Argon and Neon in the Self-Consistent Phonon Approximation , 1968 .

[70]  Z. Alexandrowicz,et al.  Stochastic Model for Chains with Excluded Volume , 1971 .

[71]  Kurt Binder,et al.  Monte Carlo study of thin magnetic Ising films , 1974 .

[72]  A. B. Bortz,et al.  A new algorithm for Monte Carlo simulation of Ising spin systems , 1975 .

[73]  Kurt Binder,et al.  Monte Carlo Calculation of the Scaling Equation of State for the Classical Heisenberg Ferromagnet , 1973 .

[74]  Abdullah Sadiq,et al.  Transport coefficients from computer experiments: A stochastic Ising model , 1974 .

[75]  Shang‐keng Ma Renormalization Group by Monte Carlo Methods , 1976 .

[76]  Harold L. Friedman,et al.  Brownian dynamics: Its application to ionic solutions , 1977 .

[77]  P. C. Hohenberg,et al.  Surface effects on magnetic phase transitions , 1974 .

[78]  P. C. Hohenberg,et al.  Phase Transitions and Static Spin Correlations in Ising Models with Free Surfaces , 1972 .

[79]  Leo P. Kadanoff,et al.  Hydrodynamic equations and correlation functions , 1963 .

[80]  R. Friedberg,et al.  Test of the Monte Carlo Method: Fast Simulation of a Small Ising Lattice , 1970 .

[81]  D. Ermak A computer simulation of charged particles in solution. I. Technique and equilibrium properties , 1975 .

[82]  Jean-Pierre Hansen,et al.  Phase Transitions of the Lennard-Jones System , 1969 .

[83]  Kurt Binder,et al.  Phase transitions of a nearest-neighbor Ising-model spin glass , 1976 .