Variable Sampling Interval Cumulative Count of Conforming Chart with Runs Rules

The cumulative count of conforming (CCC) chart is effective in detecting very low fraction of nonconforming items for high yield manufacturing processes. In this study, a combination of runs rules and variable sampling interval feature is proposed to a lower sided CCC chart by inspecting the items one by one. The performance measures of the control chart are derived by using the Markov chain approach. The numerical comparisons show that the performance of the CCC chart can be improved by adding the runs rules and varying the sampling interval.

[1]  Thong Ngee Goh,et al.  Cumulative count of conforming chart with variable sampling intervals , 2006 .

[2]  Rassoul Noorossana,et al.  On the conditional decision procedure for high yield processes , 2007, Comput. Ind. Eng..

[3]  Thong Ngee Goh,et al.  Some procedures for decision making in controlling high yield processes , 1992 .

[4]  Zhang Wu,et al.  The Revised m-of-k Runs Rule Based on Median Run Length , 2012, Commun. Stat. Simul. Comput..

[5]  Yan-Kwang Chen,et al.  Cumulative conformance count charts with variable sampling intervals for correlated samples , 2013, Comput. Ind. Eng..

[6]  Kuo-Ching Chiou,et al.  Cumulative conformance count chart with variable sampling intervals and control limits , 2011 .

[7]  Thong Ngee Goh,et al.  On economic design of cumulative count of conforming chart , 2001 .

[8]  Abdur Rahim,et al.  A CCC‐r chart for high‐yield processes , 2001 .

[9]  T. N. Goh,et al.  On Cumulative Conforming Type of Control Charts for High Quality Processes Under Sampling Inspection , 2005 .

[10]  Gyo-Young Cho,et al.  Multivariate Control Charts for Monitoring the Mean Vector and Covariance Matrix with Variable Sampling Intervals , 2011 .

[11]  Amirhossein Amiri,et al.  Estimating the change point of the cumulative count of a conforming control chart under a drift , 2012 .

[12]  Thong Ngee Goh,et al.  Optimal control limits for CCC charts in the presence of inspection errors , 2003 .

[13]  Thong Ngee Goh,et al.  A COMPARATIVE STUDY OF CCC AND CUSUM CHARTS , 1998 .

[14]  Su-Fen Yang,et al.  Monitoring and diagnosing dependent process steps using VSI control charts , 2011 .

[15]  Loon Ching Tang,et al.  Cumulative conformance count chart with sequentially updated parameters , 2004 .

[16]  Janet M. Twomey,et al.  A Sequential Bayesian Cumulative Conformance Count Approach to Deterioration Detection in High Yield Processes , 2012, Qual. Reliab. Eng. Int..

[17]  Athanasios C. Rakitzis,et al.  The Modified r Out of m Control Chart , 2008, Commun. Stat. Simul. Comput..

[18]  Jung-Tai Chen,et al.  ° ° ° ° * • ° ° ° ° * • ° ° ° ° * • * ° , 2009 .

[19]  Su-Fen Yang,et al.  Using VSI Loss Control Charts to Monitor a Process with Incorrect Adjustment , 2010, Commun. Stat. Simul. Comput..

[20]  Zhang Wu,et al.  An SPRT control chart with variable sampling intervals , 2011 .

[21]  Athanasios C. Rakitzis,et al.  Chi-square Control Charts with Runs Rules , 2011 .

[22]  Thong Ngee Goh,et al.  Economic design of cumulative count of conforming charts under inspection by samples , 2008 .

[23]  Sebnem Yilmaz,et al.  An Economic Approach to the Management of High-Quality Processes , 2013, Qual. Reliab. Eng. Int..

[24]  Zhonghua Li,et al.  Cusum of Q chart with variable sampling intervals for monitoring the process mean , 2010 .

[25]  Thong Ngee Goh,et al.  A study of economic design of control charts for cumulative count of conforming items , 1997 .

[26]  T. Calvin,et al.  Quality Control Techniques for "Zero Defects" , 1983 .

[27]  Athanasios C. Rakitzis,et al.  Runs rules schemes for monitoring process variability , 2010 .

[28]  Eugenio K. Epprecht,et al.  A variable sampling interval EWMA chart for attributes , 2010 .

[29]  Tongdan Jin,et al.  An improved self-starting cumulative count of conforming chart for monitoring high-quality processes under group inspection , 2012 .