Nijenhuis geometry

This work is the first, and main, of the series of papers in progress dedicated to Nienhuis operators, i.e., fields of endomorphisms with vanishing Nijenhuis tensor. It serves as an introduction to Nijenhuis Geometry that should be understood in much wider context than before: from local description at generic points to singularities and global analysis. The goal of the present paper is to introduce terminology, develop new important techniques (e.g., analytic functions of Nijenhuis operators, splitting theorem and linearisation), summarise and generalise basic facts (some of which are already known but we give new self-contained proofs), and more importantly, to demonstrate that the research programme proposed in the paper is realistic by proving a series of new, not at all obvious, results.

[1]  T. Levi-Civita Sulle trasformazioni delle equazioni dinamiche , 1896 .

[2]  A. Nijenhuis Xn-1-Forming Sets of Eigenvectors , 1951 .

[3]  M. Artin,et al.  On the solutions of analytic equations , 1968 .

[4]  Dietrich Burde,et al.  Left-symmetric algebras, or pre-Lie algebras in geometry and physics , 2005, math-ph/0509016.

[5]  P. Alam ‘W’ , 2021, Composites Engineering.

[6]  P. Lorenzoni,et al.  Hamiltonian Operators of Dubrovin-Novikov Type in 2D , 2013, 1312.0475.

[7]  S. Tabachnikov,et al.  Open problems, questions and challenges in finite- dimensional integrable systems , 2018, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[8]  Lennart Carleson,et al.  Mergelyan's Theorem on Uniform Polynomial Approximation. , 1964 .

[9]  Franco Magri,et al.  Poisson-Nijenhuis structures , 1990 .

[10]  C. Boubel An integrability condition for fields of nilpotent endomorphisms , 2010, 1003.0979.

[11]  N. Steenrod Topology of Fibre Bundles , 1951 .

[12]  A. Bolsinov,et al.  Local normal forms for geodesically equivalent pseudo-Riemannian metrics , 2013, 1301.2492.

[13]  A. Lichnerowicz,et al.  Les variétés de Poisson et leurs algèbres de Lie associées , 1977 .

[14]  V. Matveev Hyperbolic manifolds are geodesically rigid , 2003 .

[15]  M. Mehdi,et al.  Existence of conservation laws and characterization of recursion operators for completely integrable systems , 1997 .

[16]  V. Arnold ON MATRICES DEPENDING ON PARAMETERS , 1971 .

[17]  A. Bolsinov,et al.  Applications of Nijenhuis geometry: non-degenerate singular points of Poisson–Nijenhuis structures , 2020, European Journal of Mathematics.

[18]  A. Bolsinov,et al.  Splitting and gluing lemmas for geodesically equivalent pseudo-Riemannian metrics , 2011 .

[19]  V. Matveev On projectively equivalent metrics near points of bifurcation , 2008, 0809.3602.

[20]  V. Matveev,et al.  Some Remarks on Nijenhuis Bracket, Formality, and K\ , 2011, 1103.3877.

[21]  A. Weinstein Poisson Geometry , 2001 .

[22]  Classification locale simultanée de deux formes symplectiques compatibles , 1994 .

[23]  A. Weinstein Local structure of Poisson manifolds , 2021, Lectures on Poisson Geometry.

[24]  Alexander Odesskii,et al.  Integrable matrix equations related to pairs of compatible associative algebras , 2006, math/0604574.

[25]  O. Bogoyavlenskij Algebraic identities for the Nijenhuis tensors , 2006 .

[26]  Louis Nirenberg,et al.  Complex Analytic Coordinates in Almost Complex Manifolds , 1957 .

[27]  S. Lie Theorie der Transformationsgruppen I , 1880 .

[28]  P. Topalov Families of metrics geodesically equivalent to the analogs of the Poisson sphere , 2000 .

[29]  E. G. Puninskii Natural operators on tensor fields , 2014 .

[30]  A. Nijenhuis,et al.  Theory of Vector-Valued Differential Forms: Part I. Derivations in the Graded Ring of Differential Forms , 1956 .

[31]  A. Bolsinov,et al.  Geometrical interpretation of Benenti systems , 2003 .

[32]  A. Konyaev Nijenhuis geometry II: Left-symmetric algebras and linearization problem for Nijenhuis operators , 2019, 1903.06411.

[33]  A. Bolsinov,et al.  Singularities of Bi-Hamiltonian Systems , 2012, 1203.3419.

[34]  Franco Magri,et al.  A Simple model of the integrable Hamiltonian equation , 1978 .