Macrophage depletion improves survival of porcine neonatal pancreatic cell clusters contained in alginate macrocapsules transplanted into rats

Omer A, Keegan M, Czismadia E, De Vos P, Van Rooijen N, Bonner‐Weir S and Weir GC. Macrophage depletion improves survival of porcine neonatal pancreatic cell clusters contained in alginate macrocapsules transplanted into rats. Xenotransplantation 2003; 10: 240–251. © Blackwell Munksgaard 2003

[1]  Microencapsulation of Cells , 2005 .

[2]  N. Rooijen,et al.  Macrophage depletion in the rat after intraperitoneal administration of liposome-encapsulated clodronate: Depletion kinetics and accelerated repopulation of peritoneal and omental macrophages by administration of freund's adjuvant , 1995, Cell and Tissue Research.

[3]  U. Landegren,et al.  A distinct Th1 immune response precedes the described Th2 response in islet xenograft rejection. , 2002, Diabetes.

[4]  G. Weir,et al.  Complete protection of islets against allorejection and autoimmunity by a simple barium-alginate membrane. , 2001, Diabetes.

[5]  S. Bonner-Weir,et al.  Increase in β-Cell Mass in Transplanted Porcine Neonatal Pancreatic Cell Clusters Is Due to Proliferation of β-Cells and Differentiation of Duct Cells. , 2001, Endocrinology.

[6]  J. Juang,et al.  Reduction in Primary Nonfunction of Syngeneic Islet Transplants with Nordihydroguaiaretic Acid, a Lipoxygenase Inhibitor , 2001, Cell transplantation.

[7]  G M Steil,et al.  ISLETS IN ALGINATE MACROBEADS REVERSE DIABETES DESPITE MINIMAL ACUTE INSULIN SECRETORY RESPONSES1 , 2001, Transplantation.

[8]  B. Kulseng,et al.  Poly-L-Lysine induces fibrosis on alginate microcapsules via the induction of cytokines. , 2001, Cell transplantation.

[9]  S. Bonner-Weir,et al.  Increase in beta-cell mass in transplanted porcine neonatal pancreatic cell clusters is due to proliferation of beta-cells and differentiation of duct cells. , 2001, Endocrinology.

[10]  H. Iwata,et al.  EFFECTS OF MICRO-ENCAPSULATION ON MORPHOLOGY AND ENDOCRINE FUNCTION OF CRYOPRESERVED NEONATAL PORCINE ISLET-LIKE CELL CLUSTERS , 2000, Transplantation.

[11]  O. Korsgren,et al.  Pig islet xenograft rejection is markedly delayed in macrophage‐depleted mice: a study in streptozotocin diabetic animals , 2000, Xenotransplantation.

[12]  G. Korbutt,et al.  Microencapsulation of neonatal porcine islets: protection from human antibody/complement-mediated cytolysis in vitro and long-term reversal of diabetes in nude mice. , 2000, Transplantation.

[13]  H. Yang,et al.  Glucose control and long-term survival in biobreeding/Worcester rats after intraperitoneal implantation of hydrophilic macrobeads containing porcine islets without immunosuppression. , 1999, Transplantation.

[14]  S. Bonner-Weir,et al.  Differentiation and Expansion of Beta Cell Mass in Porcine Neonatal Pancreatic Cell Clusters Transplanted into Nude Mice , 1999, Cell transplantation.

[15]  J. Hubbell,et al.  In Vitro and in Vivo Performance of Porcine Islets Encapsulated in Interfacially Photopolymerized Poly(Ethylene Glycol) Diacrylate Membranes , 1999, Cell transplantation.

[16]  R. Lanza,et al.  Xenotransplantation of cells using biodegradable microcapsules. , 1999, Transplantation.

[17]  E. Castaños-Vélez,et al.  Fetal porcine islet-like cell clusters transplanted to cynomolgus monkeys: an immunohistochemical study. , 1999, Transplantation.

[18]  B. Hering,et al.  Analysis of the cellular reaction towards microencapsulated xenogeneic islets after intraperitoneal transplantation , 1999, Journal of Molecular Medicine.

[19]  H. Sitter,et al.  Amitogenic Alginates: Key to First Clinical Application of Microencapsulation Technology , 1998, World Journal of Surgery.

[20]  C. Ricordi,et al.  Transplantation of allogeneic islets of Langerhans in the rat liver: effects of macrophage depletion on graft survival and microenvironment activation. , 1998, Diabetes.

[21]  A. Ramsay,et al.  Eosinophils are not required for the rejection of neovascularized fetal pig proislet xenografts in mice. , 1997, Journal of immunology.

[22]  P. De Vos,et al.  Improved biocompatibility but limited graft survival after purification of alginate for microencapsulation of pancreatic islets , 1997, Diabetologia.

[23]  P. de Vos,et al.  Upscaling the production of microencapsulated pancreatic islets. , 1997, Biomaterials.

[24]  A. Sun Microencapsulation of cells. Medical applications. , 1997, Annals of the New York Academy of Sciences.

[25]  D. Candinas,et al.  T cell independence of macrophage and natural killer cell infiltration, cytokine production, and endothelial activation during delayed xenograft rejection. , 1996, Transplantation.

[26]  A. Sun,et al.  Normalization of diabetes in spontaneously diabetic cynomologus monkeys by xenografts of microencapsulated porcine islets without immunosuppression. , 1996, The Journal of clinical investigation.

[27]  G. Korbutt,et al.  Large scale isolation, growth, and function of porcine neonatal islet cells. , 1996, The Journal of clinical investigation.

[28]  A. Monaco,et al.  Treatment of Diabetes by Xenogeneic Islets Without Immunosuppression: Use of a Vascularized Bioartificial Pancreas , 1996, Diabetes.

[29]  O. Korsgren,et al.  THE MAIN INFILTRATING CELL IN XENOGRAFT REJECTION IS A CD4+ MACROPHAGE AND NOT A T LYMPHOCYTE , 1995, Transplantation.

[30]  D. Ecker,et al.  Xenotransplantation of porcine and bovine islets without immunosuppression using uncoated alginate microspheres. , 1995, Transplantation.

[31]  S. Bonner-Weir,et al.  Function, Mass, and Replication of Porcine and Rat Islets Transplanted into Diabetic Nude Mice , 1995, Diabetes.

[32]  R. Oriol,et al.  Oligosaccharides and Discordant Xenotransplantation , 1994, Immunological reviews.

[33]  P. Vos,et al.  The capsular overgrowth on microencapsulated pancreatic islet grafts in streptozotocin and autoimmune diabetic rats , 1994 .

[34]  O. Korsgren,et al.  Characterization of mixed syngeneic-allogeneic and syngeneic-xenogeneic islet-graft rejections in mice. Evidence of functional impairment of the remaining syngeneic islets in xenograft rejections. , 1994, The Journal of clinical investigation.

[35]  O. Korsgren,et al.  Transplantation of porcine fetal islet-like cell clusters into eight diabetic patients. , 1992, Transplantation proceedings.

[36]  K Hannig,et al.  Production of mitogen‐contamination free alginates with variable ratios of mannuronic acid to guluronic acid by free flow electrophoresis , 1992, Electrophoresis.

[37]  O. Korsgren,et al.  Transplantation of porcine fetal islet-like cell clusters to three diabetic patients. , 1992, Transplantation Proceedings.

[38]  Patrick Soon-Shiong,et al.  Induction of Cytokine Production from Human Monocytes Stimulated with Alginate , 1991, Journal of immunotherapy : official journal of the Society for Biological Therapy.

[39]  G. Skjåk‐Braek,et al.  An immunologic basis for the fibrotic reaction to implanted microcapsules. , 1991, Transplantation proceedings.

[40]  H. Clayton,et al.  The effect of capsule composition on the biocompatibility of alginate-poly-l-lysine capsules. , 1991, Journal of microencapsulation.

[41]  R. Ceredig,et al.  Antibody-induced rejection of pig proislet xenografts in CD4+ T cell-depleted diabetic mice. , 1990, Transplantation.

[42]  N. Rooijen,et al.  Macrophage Subset Repopulation in the Spleen: Differential Kinetics After Liposome‐Mediated Elimination , 1989, Journal of leukocyte biology.

[43]  R. Beelen,et al.  Immunological characteristics of milky spots in the omentum of rats. , 1988, Advances in experimental medicine and biology.

[44]  E. Döpp,et al.  The heterogeneity of mononuclear phagocytes in lymphoid organs: distinct macrophage subpopulations in rat recognized by monoclonal antibodies ED1, ED2 and ED3. , 1985, Advances in experimental medicine and biology.

[45]  Thomas K. Hunt,et al.  ON THE TREATMENT OF , 1846 .