Nonlinear Model Reduction via Discrete Empirical Interpolation

A dimension reduction method called discrete empirical interpolation is proposed and shown to dramatically reduce the computational complexity of the popular proper orthogonal decomposition (POD) method for constructing reduced-order models for time dependent and/or parametrized nonlinear partial differential equations (PDEs). In the presence of a general nonlinearity, the standard POD-Galerkin technique reduces dimension in the sense that far fewer variables are present, but the complexity of evaluating the nonlinear term remains that of the original problem. The original empirical interpolation method (EIM) is a modification of POD that reduces the complexity of evaluating the nonlinear term of the reduced model to a cost proportional to the number of reduced variables obtained by POD. We propose a discrete empirical interpolation method (DEIM), a variant that is suitable for reducing the dimension of systems of ordinary differential equations (ODEs) of a certain type. As presented here, it is applicable to ODEs arising from finite difference discretization of time dependent PDEs and/or parametrically dependent steady state problems. However, the approach extends to arbitrary systems of nonlinear ODEs with minor modification. Our contribution is a greatly simplified description of the EIM in a finite-dimensional setting that possesses an error bound on the quality of approximation. An application of DEIM to a finite difference discretization of the one-dimensional FitzHugh-Nagumo equations is shown to reduce the dimension from 1024 to order 5 variables with negligible error over a long-time integration that fully captures nonlinear limit cycle behavior. We also demonstrate applicability in higher spatial dimensions with similar state space dimension reduction and accuracy results.

[1]  Arnold W. Heemink,et al.  Inverse modeling of groundwater flow using model reduction , 2005 .

[2]  Michael Striebel,et al.  Nonlinear model order reduction in nanoelectronics: Combination of POD and TPWL , 2008 .

[3]  G. Dahlquist Stability and error bounds in the numerical integration of ordinary differential equations , 1961 .

[4]  D. Rovas,et al.  Output bounds for reduced-basis approximations of symmetric positive definite eigenvalue problems , 2000 .

[5]  John R. Gilbert,et al.  Sparse Matrices in MATLAB: Design and Implementation , 1992, SIAM J. Matrix Anal. Appl..

[6]  James Demmel,et al.  LAPACK Users' Guide, Third Edition , 1999, Software, Environments and Tools.

[7]  George M. Homsy,et al.  Simulation of nonlinear viscous fingering in miscible displacement , 1988 .

[8]  Dean S. Clark,et al.  Short proof of a discrete gronwall inequality , 1987, Discret. Appl. Math..

[9]  S Pushpavanam,et al.  Viscous fingering in a horizontal flow through a porous medium induced by chemical reactions under isothermal and adiabatic conditions. , 2007, The Journal of chemical physics.

[10]  Jacob K. White,et al.  A trajectory piecewise-linear approach to model order reduction and fast simulation of nonlinear circuits and micromachined devices , 2001, IEEE/ACM International Conference on Computer Aided Design. ICCAD 2001. IEEE/ACM Digest of Technical Papers (Cat. No.01CH37281).

[11]  J. Peraire,et al.  A ‘best points’ interpolation method for efficient approximation of parametrized functions , 2008 .

[12]  P. Astrid,et al.  On the Construction of POD Models from Partial Observations , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[13]  RewieÅ ski,et al.  A trajectory piecewise-linear approach to model order reduction of nonlinear dynamical systems , 2003 .

[14]  C. Loan The Sensitivity of the Matrix Exponential , 1977 .

[15]  J. J. Douglas,et al.  Finite Difference Methods for Two-Phase Incompressible Flow in Porous Media , 1983 .

[16]  S. Prajna,et al.  POD model reduction with stability guarantee , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[17]  Stefan Volkwein,et al.  Proper orthogonal decomposition for optimality systems , 2008 .

[18]  N. Nguyen,et al.  An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations , 2004 .

[19]  J. Azaiez,et al.  Fully implicit finite difference pseudo‐spectral method for simulating high mobility‐ratio miscible displacements , 2005 .

[20]  Bernard Haasdonk,et al.  Adaptive Basis Enrichment for the Reduced Basis Method Applied to Finite Volume Schemes , 2008 .

[21]  Janet S. Peterson,et al.  The Reduced Basis Method for Incompressible Viscous Flow Calculations , 1989 .

[22]  P. Astrid,et al.  Fast reduced order modeling technique for large scale LTV systems , 2004, Proceedings of the 2004 American Control Conference.

[23]  Muruhan Rathinam,et al.  A New Look at Proper Orthogonal Decomposition , 2003, SIAM J. Numer. Anal..

[24]  Ngoc Cuong Nguyen,et al.  A posteriori error estimation and basis adaptivity for reduced-basis approximation of nonaffine-parametrized linear elliptic partial differential equations , 2007, J. Comput. Phys..

[25]  Senol Utku,et al.  Errors in reduction methods , 1985 .

[26]  T. H. Gronwall Note on the Derivatives with Respect to a Parameter of the Solutions of a System of Differential Equations , 1919 .

[27]  Germund Dahlquist,et al.  33 years of numerical instability, Part I , 1985 .

[28]  Lawrence Sirovich,et al.  Karhunen–Loève procedure for gappy data , 1995 .

[29]  Stefan Volkwein,et al.  Galerkin proper orthogonal decomposition methods for parabolic problems , 2001, Numerische Mathematik.

[30]  Chao Yang,et al.  ARPACK users' guide - solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods , 1998, Software, environments, tools.

[31]  R. Murray,et al.  Model reduction for compressible flows using POD and Galerkin projection , 2004 .

[32]  Z. Bai Krylov subspace techniques for reduced-order modeling of large-scale dynamical systems , 2002 .

[33]  Jan Dirk Jansen,et al.  Generation of Low-Order Reservoir Models Using System-Theoretical Concepts , 2004 .

[34]  A. De Wit,et al.  Miscible viscous fingering induced by a simple A+B-->C chemical reaction. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[35]  Anthony T. Patera,et al.  A Priori Convergence Theory for Reduced-Basis Approximations of Single-Parameter Elliptic Partial Differential Equations , 2002, J. Sci. Comput..

[36]  Yong P. Chen,et al.  A Quadratic Method for Nonlinear Model Order Reduction , 2000 .

[37]  D. Sorensen,et al.  Application of POD and DEIM on dimension reduction of non-linear miscible viscous fingering in porous media , 2011 .

[38]  Falk Ebert,et al.  A note on POD model reduction methods for DAEs , 2010 .

[39]  S. Ravindran,et al.  A Reduced-Order Method for Simulation and Control of Fluid Flows , 1998 .

[40]  C. Rocsoreanu,et al.  The FitzHugh-Nagumo Model: Bifurcation and Dynamics , 2010 .

[41]  S. Volkwein,et al.  MODEL REDUCTION USING PROPER ORTHOGONAL DECOMPOSITION , 2008 .

[42]  Daniel B. Szyld,et al.  The many proofs of an identity on the norm of oblique projections , 2006, Numerical Algorithms.

[43]  Nejib Smaoui,et al.  A new approach combining Karhunen-Loéve decomposition and artificial neural network for estimating tight gas sand permeability , 1997 .

[44]  Jens L. Eftang,et al.  Reduced basis methods for parametrized partial differential equations , 2011 .

[45]  Jacob K. White,et al.  Model order reduction for nonlinear dynamical systems based on trajectory piecewise-linear approximations , 2006 .

[46]  J. Peraire,et al.  An efficient reduced‐order modeling approach for non‐linear parametrized partial differential equations , 2008 .

[47]  Gustaf Söderlind,et al.  Bounds on nonlinear operators in finite-dimensional banach spaces , 1986 .

[48]  P. Astrid,et al.  Reduction of process simulation models : a proper orthogonal decomposition approach , 2004 .

[49]  David Galbally,et al.  Non‐linear model reduction for uncertainty quantification in large‐scale inverse problems , 2009 .

[50]  Jan Dirk Jansen,et al.  Accelerating iterative solution methods using reduced‐order models as solution predictors , 2006 .

[51]  Jens L. Eftang,et al.  An hp certified reduced basis method for parametrized parabolic partial differential equations , 2011 .

[52]  J. Peraire,et al.  OPTIMAL CONTROL OF VORTEX SHEDDING USING LOW-ORDER MODELS. PART II-MODEL-BASED CONTROL , 1999 .

[53]  M. Zak,et al.  Model reconstruction using POD method for gray-box fault detection , 2003, 2003 IEEE Aerospace Conference Proceedings (Cat. No.03TH8652).

[54]  J. Peraire,et al.  Balanced Model Reduction via the Proper Orthogonal Decomposition , 2002 .

[55]  Arnold W. Heemink,et al.  Model inversion of transient nonlinear groundwater flow models using model reduction , 2006 .

[56]  D. Sorensen,et al.  A Survey of Model Reduction Methods for Large-Scale Systems , 2000 .

[57]  Clarence W. Rowley,et al.  Model Reduction for fluids, Using Balanced Proper Orthogonal Decomposition , 2005, Int. J. Bifurc. Chaos.

[58]  K. Willcox,et al.  Aerodynamic Data Reconstruction and Inverse Design Using Proper Orthogonal Decomposition , 2004 .

[59]  Marcus Meyer,et al.  Efficient model reduction in non-linear dynamics using the Karhunen-Loève expansion and dual-weighted-residual methods , 2003 .

[60]  Louis J. Durlofsky,et al.  Development and application of reduced‐order modeling procedures for subsurface flow simulation , 2009 .

[61]  N. Nguyen,et al.  EFFICIENT REDUCED-BASIS TREATMENT OF NONAFFINE AND NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS , 2007 .

[62]  C. Farhat,et al.  A low‐cost, goal‐oriented ‘compact proper orthogonal decomposition’ basis for model reduction of static systems , 2011 .

[63]  Charbel Farhat,et al.  A method for interpolating on manifolds structural dynamics reduced‐order models , 2009 .

[64]  William W.-G. Yeh,et al.  Groundwater Management Using Model Reduction via Empirical Orthogonal Functions , 2008 .

[65]  Siep Weiland,et al.  Missing Point Estimation in Models Described by Proper Orthogonal Decomposition , 2004, IEEE Transactions on Automatic Control.

[66]  S. Cox,et al.  Discerning ionic currents and their kinetics from input impedance data , 2001, Bulletin of mathematical biology.

[67]  D. Rovas,et al.  Reliable Real-Time Solution of Parametrized Partial Differential Equations: Reduced-Basis Output Bound Methods , 2002 .

[68]  Linda R. Petzold,et al.  Approved for public release; further dissemination unlimited Error Estimation for Reduced Order Models of Dynamical Systems ∗ , 2003 .

[69]  M. Mishra,et al.  Differences in miscible viscous fingering of finite width slices with positive or negative log-mobility ratio. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[70]  S. Ravindran A reduced-order approach for optimal control of fluids using proper orthogonal decomposition , 2000 .

[71]  Anthony T. Patera,et al.  An "hp" Certified Reduced Basis Method for Parametrized Elliptic Partial Differential Equations , 2010, SIAM J. Sci. Comput..

[72]  Gianluigi Rozza,et al.  Reduced basis method for multi-parameter-dependent steady Navier-Stokes equations: Applications to natural convection in a cavity , 2009, J. Comput. Phys..

[73]  Karen Willcox,et al.  Unsteady Flow Sensing and Estimation via the Gappy Proper Orthogonal Decomposition , 2004 .

[74]  T. Ström On Logarithmic Norms , 1975 .

[75]  Ning Dong,et al.  Piecewise polynomial nonlinear model reduction , 2003, Proceedings 2003. Design Automation Conference (IEEE Cat. No.03CH37451).

[76]  Yong Chen Model order reduction for nonlinear systems , 1999 .

[77]  Karen Willcox,et al.  Model Reduction for Large-Scale Systems with High-Dimensional Parametric Input Space , 2008, SIAM J. Sci. Comput..

[78]  Anthony T. Patera,et al.  A posteriori error estimation for reduced-basis approximation of parametrized elliptic coercive partial differential equations : “convex inverse” bound conditioners , 2002 .

[79]  T Spanos Miscible Displacement in Porous Media , 2001 .

[80]  Danny C. Sorensen,et al.  Morphologically accurate reduced order modeling of spiking neurons , 2010, Journal of Computational Neuroscience.

[81]  K. Kunisch,et al.  Control of the Burgers Equation by a Reduced-Order Approach Using Proper Orthogonal Decomposition , 1999 .

[82]  Danny C. Sorensen,et al.  Discrete Empirical Interpolation for nonlinear model reduction , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[83]  Gianluigi Rozza,et al.  Reduced basis approximation and a posteriori error estimation for the time-dependent viscous Burgers’ equation , 2009 .

[84]  Michal Rewienski,et al.  A trajectory piecewise-linear approach to model order reduction of nonlinear dynamical systems , 2003 .

[85]  A Arie Verhoeven,et al.  Redundancy reduction of IC models : by multirate time-integration and model order reduction , 2008 .

[86]  M. Hinze,et al.  Proper Orthogonal Decomposition Surrogate Models for Nonlinear Dynamical Systems: Error Estimates and Suboptimal Control , 2005 .

[87]  Ahmed K. Noor,et al.  Reduced Basis Technique for Nonlinear Analysis of Structures , 1980 .

[88]  R. Bellman The stability of solutions of linear differential equations , 1943 .

[89]  G. Homsy,et al.  Stability of miscible displacements in porous media: Rectilinear flow , 1986 .

[90]  G. Söderlind,et al.  The logarithmic norm. History and modern theory , 2006 .

[91]  A. Patera,et al.  A posteriori error bounds for reduced-basis approximations of parametrized parabolic partial differential equations , 2005 .

[92]  C. Farhat,et al.  Interpolation Method for Adapting Reduced-Order Models and Application to Aeroelasticity , 2008 .

[93]  Wr Graham,et al.  OPTIMAL CONTROL OF VORTEX SHEDDING USING LOW-ORDER MODELS. PART I-OPEN-LOOP MODEL DEVELOPMENT , 1999 .

[94]  Saifon Chaturantabut Dimension reduction for unsteady nonlinear partial differential equations via empirical interpolation methods , 2009 .

[95]  Arnold Heemink,et al.  Reduced models for linear groundwater flow models using empirical orthogonal functions , 2004 .

[96]  Stefan Volkwein,et al.  Galerkin Proper Orthogonal Decomposition Methods for a General Equation in Fluid Dynamics , 2002, SIAM J. Numer. Anal..

[97]  Louis J. Durlofsky,et al.  Linearized reduced-order models for subsurface flow simulation , 2010, J. Comput. Phys..

[98]  G. Stewart,et al.  Reorthogonalization and stable algorithms for updating the Gram-Schmidt QR factorization , 1976 .