The effects of grazing and burning on soil and plant nutrient concentrations in Colombian páramo grasslands

The impact of extensive livestock farming on the physical and chemical characteristics of the volcanic soils and on the nutrient status of green plant tissues of neotropical alpine grasslands (páramo) is studied. Soil and plant samples were taken over a one-year period at five sites with different agricultural (grazing and burning) management. In the undisturbed páramo ecosystem, soil moisture (50–250%) and organic matter content are high (7–27%) and decomposition (11–35% yr-1) and element concentrations are low. Low temperatures (max < 10°C) and phosphorus fixation by the soil (5 mg P g-1 soil) determine the low mineralization and turn-over rates.Multivariate analysis of laboratory results indicates that the season of sampling and the agricultural practice are the most important explanatory factors for variation of soil characteristics. After long-term heavy grazing, soils have a higher bulk density and a lower moisture content. The outcome of a litterbag experiment confirms the hypothesis of higher decomposition rates at grazed sites. In the intermediate (wet-dry) season, conditions were somewhat better for plant growth but the system remained nutrient limited.Surprisingly, no relation between soil density, moisture or carbon content and concentrations of available nutrients in the soil is found. This is supported by the rather uniform nutrient concentrations in green plant tissue among the sites. It is concluded therefore that the effect of burning and grazing on páramo soils is principally restricted to physical characteristics, and that differences in chemical characteristics of the soil do not cause differences in vegetation structure between grazed, burned and undisturbed sites.

[1]  H.J.L. Witte Seasonal and altitudinal distribution of precipitation, temperature and humidity in the Parque Los Nevados transect (Cordillera Central, Colombia) , 1994 .

[2]  W. D. Billings Arctic and Alpine Vegetations: Similarities, Differences, and Susceptibility to Disturbance , 1973 .

[3]  F. Martin,et al.  Mineral concentrations in leaves and stems of various forages of the Colombian paramo , 1990 .

[4]  M. Hill,et al.  Data analysis in community and landscape ecology , 1987 .

[5]  Henrik Balslev,et al.  Paramo, an Andean ecosystem under human influence , 1992 .

[6]  F. Chapin,et al.  Soil Temperature and Nutrient Cycling in the Tussock Growth Form of Eriophorum Vaginatum , 1979 .

[7]  D. Moorhead,et al.  Effects of climate change on decomposition in Arctic Tussock Tundra: A modeling synthesis , 1993 .

[8]  J. Anderson,et al.  Decomposition in Terrestrial Ecosystems , 1979 .

[9]  F. L. Pérez The influence of organic matter addition by caulescent Andean rosettes on surficial soil properties , 1992 .

[10]  Richard J. Vogl,et al.  5 – Effects of Fire on Grasslands , 1974 .

[11]  F. S. Chapin,et al.  The Mineral Nutrition of Wild Plants , 1980 .

[12]  R. Zasoski,et al.  Microbial effects in maintaining organic and inorganic solution phosphorus concentrations in a grassland topsoil , 2004, Plant and Soil.

[13]  S. McNaughton,et al.  Large Mammals and Process Dynamics in African EcosystemsHerbivorous mammals affect primary productivity and regulate recycling balances , 1988 .

[14]  O. Rangel,et al.  Ecologia de los paramos andinos : una visión preliminar integrada , 1985 .

[15]  C.J.F. ter Braak,et al.  CANOCO - a FORTRAN program for canonical community ordination by [partial] [etrended] [canonical] correspondence analysis, principal components analysis and redundancy analysis (version 2.1) , 1988 .

[16]  P. Rundel Fire as an Ecological Factor , 1981 .

[17]  F. Chapin,et al.  Phosphorus cycling in Alaskan coastal tundra: a hypothesis for the regulation of nutrient cycling , 1978 .

[18]  M. Caldwell,et al.  Coping with herbivory: Photosynthetic capacity and resource allocation in two semiarid Agropyron bunchgrasses , 1981, Oecologia.

[19]  E. Beck,et al.  Frost avoidance and freezing tolerance in Afroalpine ‘giant rosette’ plants , 1982 .

[20]  James C. Schardt,et al.  CONSTRAINTS OF NUTRIENT AVAILABILITY ON PRIMARY PRODUCTION IN TWO ALPINE TUNDRA COMMUNITIES , 1993 .

[21]  O. Sala,et al.  A Generalized Model of the Effects of Grazing by Large Herbivores on Grassland Community Structure , 1988, The American Naturalist.

[22]  M. Monasterio,et al.  Adaptive radiation of Espeletia in the cold andean tropics. , 1991, Trends in ecology & evolution.

[23]  J. Anderson,et al.  Decomposition in Terrestrial Ecosystems. Studies in Ecology Vol. 5. , 1981 .

[24]  D. Milchunas,et al.  Quantitative Effects of Grazing on Vegetation and Soils Over a Global Range of Environments , 1993 .

[25]  S. Singh,et al.  Phenological features in relation to growth forms and biomass accumulation in an alpine meadow of the Central Himalaya , 1992, Vegetatio.

[26]  J. J. Parsons THE NORTHERN ANDEAN ENVIRONMENT , 1982 .

[27]  P. Ramsay The Paramo vegetation of Ecuador : the community ecology, dynamics and productivity of tropical grasslands in the Andes , 1992 .

[28]  R. Ruess Nutrient movement and grazing: experimental effects of clipping and nitrogen source on nutrient uptake in Kyllinga nervosa , 1984 .

[29]  N. Fetcher,et al.  Changes in Arctic Tussock Tundra Thirteen Years after Fire , 1984 .

[30]  P. Verweij,et al.  Burning and grazing gradients in Páramo vegetation : initial ordination analyses , 1992 .

[31]  M. Monasterio,et al.  Estudios Ecologicos en Los Paramos Andinos , 1982 .

[32]  J. B. Kenworthy,et al.  Chemical Analysis of Ecological Materials. , 1976 .

[33]  L. Klinger,et al.  ABOVEGROUND:BELOWGROUND PHYTOMASS RATIOS IN VENEZUELAN PARAMO VEGETATION AND 1HT IR SIGNIFICANCE , 1985 .

[34]  F. Chapin,et al.  Production: Biomass Relationships and Element Cycling in Contrasting Arctic Vegetation Types , 1991 .

[35]  J. Briggs,et al.  Controls of nitrogen limitation in tallgrass prairie , 1991, Oecologia.

[36]  C. Duarte,et al.  Patterns in decomposition rates among photosynthetic organisms: the importance of detritus C:N:P content , 1993, Oecologia.

[37]  Robert W. Howarth,et al.  Nitrogen limitation on land and in the sea: How can it occur? , 1991 .

[38]  A. Cleef The Vegetation of the Páramos of the Colombian Cordillera Oriental , 1981 .

[39]  Y. Soon Soil nutrient availability. , 1985 .

[40]  J. F. Dormaar,et al.  Long-term grazing effects on fescue grassland soils. , 1971 .

[41]  P. Sánchez,et al.  Properties and Management of Soils in the Tropics , 1977 .

[42]  R. Hofstede,et al.  Biomass of grazed, burned, and undisturbed paramo grasslands, Colombia. I. Aboveground vegetation , 1995 .

[43]  ALAN P. Smith Function of Dead Leaves in Espeletia schultzii (Compositae), and Andean Caulescent Rosette Species , 1979 .

[44]  F. Evans,et al.  Primary Production and the Disappearance of Dead Vegetation on an Old Field in Southeastern Michigan , 1964 .

[45]  G. Cardozo,et al.  Estudios ecológicos en el Páramo de Cruz Verde, Colombia. III. La biomasa de tres asociaciones vegetales y la productividad de Calamagrostis Effusa (H. B. K.) Steud. Y Paepalanthus Columbiensis Ruhl. En comparación con la concentración de Clorofila , 1976 .

[46]  Peter M. Vitousek,et al.  Nutrient Cycling and Nutrient Use Efficiency , 1982, The American Naturalist.

[47]  P. Vitousek,et al.  Soil nutrient availability , 2000 .

[48]  G. Marion,et al.  Nitrogen Mineralization in a Tussock Tundra Soil , 1982, Arctic and Alpine Research.

[49]  J. F. Dormaar,et al.  Vegetation and soil responses to short-duration grazing on fescue grasslands. , 1989 .

[50]  K. Nadelhoffer,et al.  EFFECTS OF TEMPERATURE AND SUBSTRATE QUALITY ON ELEMENT MINERALIZATION IN SIX ARCTIC SOILS , 1991 .

[51]  ALAN P. Smith,et al.  TROPICAL ALPINE PLANT ECOLOGY , 1987 .

[52]  F. Stuart Chapin,et al.  Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory , 1983 .