A Dense Metal–Organic Framework for Enhanced Magnetic Refrigeration

The three-dimensional metal-organic framework Gd(HCOO)3 is characterized by a relatively compact crystal lattice of weakly interacting Gd(3+) spin centers interconnected via lightweight formate ligands, overall providing a remarkably large magnetic:non-magnetic elemental weight ratio. The resulting magnetocaloric effect per unit volume is decidedly superior in Gd(HCOO)3 than in the best known magnetic refrigerant materials for liquid-helium temperatures and low-moderate applied fields.

[1]  E. McInnes,et al.  Spin-enhanced magnetocaloric effect in molecular nanomagnets , 2005, cond-mat/0507407.

[2]  M. Affronte,et al.  Magnetothermal properties of molecule-based materials , 2006, cond-mat/0603368.

[3]  J. Sesé,et al.  Surface‐Confined Molecular Coolers for Cryogenics , 2012, Advanced materials.

[4]  J. Cashion,et al.  Mossbauer effect study of gadolinium compounds using 155Gd , 1973 .

[5]  W. Giauque,et al.  Attainment of Temperatures Below 1° Absolute by Demagnetization of Gd 2 (SO 4 ) 3 .8H 2 O , 1933 .

[6]  V. A. Ul’yanov,et al.  Determination of the structure of Y(HCOO)3 by the neutron time-of-flight diffraction method☆ , 1986 .

[7]  S. Carretta,et al.  Engineering molecular rings for magnetocaloric effect , 2004 .

[8]  J. Alonso,et al.  Cryogenic magnetocaloric effect in a ferromagnetic molecular dimer. , 2011, Angewandte Chemie.

[9]  B. Daudin,et al.  Thermodynamic properties of the gadolinium gallium garnet, Gd3Ga5O12, between 0.05 and 25 K , 1982 .

[10]  J. Sesé,et al.  Fragmenting Gadolinium: Mononuclear Polyoxometalate‐Based Magnetic Coolers for Ultra‐Low Temperatures , 2012, Advanced materials.

[11]  Song Gao,et al.  Magnetism and magnetocaloric effect in S = 7/2 Heisenberg antiferromagnet Gd2(fum)3(H2O)4·3H2O , 2009 .

[12]  S. Gubin,et al.  Magnetic molecular clusters as promising materials for refrigeration in low-temperature regions , 2001 .

[13]  A. Tishin,et al.  The Magnetocaloric Effect and its Applications , 2003 .

[14]  A. Pabst Crystal Structure of Gadolinium Formate, Gd(OOCH)3 , 1943 .

[15]  E. Brechin,et al.  Recipes for enhanced molecular cooling. , 2010, Dalton transactions.

[16]  O. Roubeau,et al.  Increasing the dimensionality of cryogenic molecular coolers: Gd-based polymers and metal-organic frameworks. , 2012, Chemical communications.

[17]  E. Brechin,et al.  Molecular coolers: The case for [CuII5GdIII4] , 2011 .

[18]  B. Malaman,et al.  A metal-organic framework as attractive cryogenic magnetorefrigerant. , 2012, Chemistry.

[19]  P. Vrabel,et al.  A large cryogenic magnetocaloric effect exhibited at low field by a 3D ferromagnetically coupled Mn(II)-Gd(III) framework material. , 2012, Chemical communications.

[20]  E. Pasca,et al.  Magnetocaloric effect in spin-degenerated molecular nanomagnets , 2009 .

[21]  R. Sessoli Chilling with magnetic molecules. , 2012, Angewandte Chemie.

[22]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[23]  X. Bohigas,et al.  Giant and time-dependent magnetocaloric effect in high-spin molecular magnets , 2000, cond-mat/0011384.