Improved Foreground Detection via Block-Based Classifier Cascade With Probabilistic Decision Integration

Background subtraction is a fundamental low-level processing task in numerous computer vision applications. The vast majority of algorithms process images on a pixel-by-pixel basis, where an independent decision is made for each pixel. A general limitation of such processing is that rich contextual information is not taken into account. We propose a block-based method capable of dealing with noise, illumination variations, and dynamic backgrounds, while still obtaining smooth contours of foreground objects. Specifically, image sequences are analyzed on an overlapping block-by-block basis. A low-dimensional texture descriptor obtained from each block is passed through an adaptive classifier cascade, where each stage handles a distinct problem. A probabilistic foreground mask generation approach then exploits block overlaps to integrate interim block-level decisions into final pixel-level foreground segmentation. Unlike many pixel-based methods, ad-hoc postprocessing of foreground masks is not required. Experiments on the difficult Wallflower and I2R datasets show that the proposed approach obtains on average better results (both qualitatively and quantitatively) than several prominent methods. We furthermore propose the use of tracking performance as an unbiased approach for assessing the practical usefulness of foreground segmentation methods, and show that the proposed approach leads to considerable improvements in tracking accuracy on the CAVIAR dataset.

[1]  Shigeo Abe DrEng Pattern Classification , 2001, Springer London.

[2]  Rainer Stiefelhagen,et al.  Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics , 2008, EURASIP J. Image Video Process..

[3]  Atsushi Shimada,et al.  Hybrid Background Model Using Spatial-Temporal LBP , 2009, 2009 Sixth IEEE International Conference on Advanced Video and Signal Based Surveillance.

[4]  Rafael C. González,et al.  Local Determination of a Moving Contrast Edge , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  Brian C. Lovell,et al.  Adaptive Patch-Based Background Modelling for Improved Foreground Object Segmentation and Tracking , 2010, 2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance.

[6]  Jozsef Vass,et al.  Automatic spatio-temporal video sequence segmentation , 1998, Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269).

[7]  Thierry Bouwmans,et al.  Background Modeling using Mixture of Gaussians for Foreground Detection - A Survey , 2008 .

[8]  Nuno Vasconcelos,et al.  Modeling, Clustering, and Segmenting Video with Mixtures of Dynamic Textures , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  Gary R. Bradski,et al.  Learning OpenCV - computer vision with the OpenCV library: software that sees , 2008 .

[10]  Mubarak Shah,et al.  Tracking and Object Classification for Automated Surveillance , 2002, ECCV.

[11]  Kentaro Toyama,et al.  Wallflower: principles and practice of background maintenance , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[12]  David Salesin,et al.  Interactive digital photomontage , 2004, SIGGRAPH 2004.

[13]  Vittorio Murino,et al.  Background Subtraction for Automated Multisensor Surveillance: A Comprehensive Review , 2010, EURASIP J. Adv. Signal Process..

[14]  Ezequiel López-Rubio,et al.  Stochastic approximation for background modelling , 2011, Comput. Vis. Image Underst..

[15]  Atsushi Shimada,et al.  Object Detection under Varying Illumination Based on Adaptive Background Modeling Considering Spatial Locality , 2009, PSIVT.

[16]  Mubarak Shah,et al.  Automated Multi-Camera Surveillance: Algorithms and Practice , 2008, The International Series in Video Computing.

[17]  M. Omizo,et al.  Modeling , 1983, Encyclopedic Dictionary of Archaeology.

[18]  Chih-Hsien Hsia,et al.  Hierarchical Method for Foreground Detection Using Codebook Model , 2011, IEEE Trans. Circuits Syst. Video Technol..

[19]  Rafael C. González,et al.  Digital image processing, 3rd Edition , 2008 .

[20]  Kazuhiko Sumi,et al.  Background subtraction based on cooccurrence of image variations , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[21]  W. Eric L. Grimson,et al.  Adaptive background mixture models for real-time tracking , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[22]  Paul A. Viola,et al.  Robust Real-Time Face Detection , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[23]  Brian C. Lovell,et al.  Improved anomaly detection in crowded scenes via cell-based analysis of foreground speed, size and texture , 2011, CVPR 2011 WORKSHOPS.

[24]  Pushmeet Kohli,et al.  Dynamic Graph Cuts for Efficient Inference in Markov Random Fields , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[25]  Larry S. Davis,et al.  Real-time foreground-background segmentation using codebook model , 2005, Real Time Imaging.

[26]  Lu Wang,et al.  Background Subtraction using Incremental Subspace Learning , 2007, 2007 IEEE International Conference on Image Processing.

[27]  Benjamin Höferlin,et al.  Evaluation of background subtraction techniques for video surveillance , 2011, CVPR 2011.

[28]  Ezequiel López-Rubio,et al.  Foreground Detection in Video Sequences with Probabilistic Self-Organizing Maps , 2011, Int. J. Neural Syst..

[29]  Horst Bischof,et al.  Time Dependent On-line Boosting for Robust Background Modeling , 2008, VISAPP.

[30]  Larry S. Davis,et al.  Non-parametric Model for Background Subtraction , 2000, ECCV.

[31]  Conrad Sanderson,et al.  Armadillo: An Open Source C++ Linear Algebra Library for Fast Prototyping and Computationally Intensive Experiments , 2010 .

[32]  Dale Schuurmans,et al.  Real-Time Discriminative Background Subtraction , 2011, IEEE Transactions on Image Processing.

[33]  David G. Stork,et al.  Pattern classification, 2nd Edition , 2000 .

[34]  P. KaewTrakulPong,et al.  An Improved Adaptive Background Mixture Model for Real-time Tracking with Shadow Detection , 2002 .

[35]  David G. Stork,et al.  Pattern Classification (2nd ed.) , 1999 .

[36]  Massimo Piccardi,et al.  Background subtraction techniques: a review , 2004, 2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No.04CH37583).

[37]  Tieniu Tan,et al.  Silhouette Analysis-Based Gait Recognition for Human Identification , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[38]  Alex Pentland,et al.  Pfinder: Real-Time Tracking of the Human Body , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[39]  Emanuele Trucco,et al.  Introductory techniques for 3-D computer vision , 1998 .

[40]  Bertrand Vachon,et al.  Statistical Background Modeling for Foreground Detection: A Survey , 2010 .

[41]  Hitoshi Habe,et al.  Background subtraction under varying illumination , 2006 .

[42]  Lucia Maddalena,et al.  A Self-Organizing Approach to Background Subtraction for Visual Surveillance Applications , 2008, IEEE Transactions on Image Processing.

[43]  Brian C. Lovell,et al.  Shadow detection: A survey and comparative evaluation of recent methods , 2012, Pattern Recognit..

[44]  David G. Stork,et al.  Pattern Classification , 1973 .

[45]  Alex Pentland,et al.  A Bayesian Computer Vision System for Modeling Human Interactions , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[46]  Zoran Duric,et al.  Using histograms to detect and track objects in color video , 2001, Proceedings 30th Applied Imagery Pattern Recognition Workshop (AIPR 2001). Analysis and Understanding of Time Varying Imagery.

[47]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[48]  Ramakant Nevatia,et al.  Single View Human Action Recognition using Key Pose Matching and Viterbi Path Searching , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[49]  Qi Tian,et al.  Statistical modeling of complex backgrounds for foreground object detection , 2004, IEEE Transactions on Image Processing.

[50]  Fatih Porikli,et al.  Human Body Tracking by Adaptive Background Models and Mean-Shift Analysis , 2003 .

[51]  David J. Fleet,et al.  Performance of optical flow techniques , 1994, International Journal of Computer Vision.

[52]  Alessandro Neri,et al.  Automatic moving object and background separation , 1998, Signal Process..

[53]  J. Munkres ALGORITHMS FOR THE ASSIGNMENT AND TRANSIORTATION tROBLEMS* , 1957 .

[54]  Qi Tian,et al.  Foreground object detection from videos containing complex background , 2003, MULTIMEDIA '03.

[55]  In-So Kweon,et al.  Hierarchical on-line boosting based background subtraction , 2011, 2011 17th Korea-Japan Joint Workshop on Frontiers of Computer Vision (FCV).

[56]  Jaime S. Cardoso,et al.  Object Segmentation Using Background Modelling and Cascaded Change Detection , 2007, J. Multim..

[57]  Bohyung Han,et al.  Density-Based Multifeature Background Subtraction with Support Vector Machine , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[58]  Brian C. Lovell,et al.  Multi-Region Probabilistic Histograms for Robust and Scalable Identity Inference , 2009, ICB.

[59]  A. Criminisi,et al.  Bilayer Segmentation of Live Video , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[60]  Zoran Zivkovic,et al.  Improved adaptive Gaussian mixture model for background subtraction , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[61]  Shaogang Gong,et al.  Incremental and adaptive abnormal behaviour detection , 2008, Comput. Vis. Image Underst..

[62]  Rita Cucchiara,et al.  Fast Background Initialization with Recursive Hadamard Transform , 2010, 2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance.

[63]  Ahmed M. Elgammal,et al.  A Framework for Feature Selection for Background Subtraction , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[64]  Brian C. Lovell,et al.  A Low-Complexity Algorithm for Static Background Estimation from Cluttered Image Sequences in Surveillance Contexts , 2013, EURASIP J. Image Video Process..