Bayesian online variable selection and scalable multivariate volatility forecasting in simultaneous graphical dynamic linear models

Simultaneous graphical dynamic linear models (SGDLMs) define an ability to scale online Bayesian analysis and multivariate volatility forecasting to higher-dimensional time series. Advances in the methodology of SGDLMs involve a novel, adaptive method of simultaneous predictor selection in forward filtering for online learning and forecasting. This Bayesian methodology for dynamic variable selection and Bayesian computation for scalability are highlighted in a case study evidencing the potential for improved short-term forecasting of large-scale volatility matrices. In financial forecasting and portfolio optimization with a 400-dimensional series of daily stock prices, analysis demonstrates SGDLM forecasts of volatilities and co-volatilities that contribute to quantitative investment strategies to improve portfolio returns. Performance metrics linked to the sequential Bayesian filtering analysis define a leading indicator of increased financial market stresses, comparable to but leading standard financial risk measures. Parallel computation using GPU implementations substantially advance the ability to fit and use these models.

[1]  M. West,et al.  Bayesian analysis of matrix normal graphical models. , 2009, Biometrika.

[2]  Roberto Casarin,et al.  An Entropy-Based Early Warning Indicator for Systemic Risk , 2015 .

[3]  Gregor Kastner,et al.  Efficient Bayesian Inference for Multivariate Factor Stochastic Volatility Models , 2016, 1602.08154.

[4]  Mike West,et al.  Dynamic dependence networks: Financial time series forecasting and portfolio decisions , 2016, 1606.08339.

[5]  M. Pitt,et al.  Time Varying Covariances: A Factor Stochastic Volatility Approach (with discussion , 1998 .

[6]  Michael A. West,et al.  Time Series: Modeling, Computation, and Inference , 2010 .

[7]  Lutz F. Gruber,et al.  Sequential Bayesian Model Selection of Regular Vine Copulas , 2015, 1512.00976.

[8]  M. Wand,et al.  Mean field variational bayes for elaborate distributions , 2011 .

[9]  Hao Wang,et al.  Sparse seemingly unrelated regression modelling: Applications in finance and econometrics , 2010, Comput. Stat. Data Anal..

[10]  M. West,et al.  Bayesian forecasting and dynamic models , 1989 .

[11]  Rongxi Zhou,et al.  Applications of Entropy in Finance: A Review , 2013, Entropy.

[12]  M. West,et al.  An analysis of international exchange rates using multivariate DLM's , 1987 .

[13]  D. F. Ahelegbey,et al.  Sparse Graphical Vector Autoregression: A Bayesian Approach , 2016 .

[14]  N. Shephard,et al.  Analysis of high dimensional multivariate stochastic volatility models , 2006 .

[15]  Michael A. West,et al.  Archival Version including Appendicies : Experiments in Stochastic Computation for High-Dimensional Graphical Models , 2005 .

[16]  Christian Schumacher,et al.  Bayesian estimation of sparse dynamic factor models with order-independent identification , 2013 .

[17]  M. West,et al.  Bayesian Analysis of Latent Threshold Dynamic Models , 2013 .

[18]  Mike West,et al.  Futures Markets, Bayesian Forecasting and Risk Modeling , 2009 .

[19]  M. West,et al.  Dynamic Factor Volatility Modeling: A Bayesian Latent Threshold Approach , 2013 .

[20]  Kevin L. Kliesen,et al.  Measuring financial market stress , 2010 .

[21]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[22]  Dongchu Sun,et al.  Bayesian stochastic search for VAR model restrictions , 2008 .

[23]  Michael A. West,et al.  Bayesian Forecasting and Dynamic Models (2nd edn) , 1997, J. Oper. Res. Soc..

[24]  Peter E. Rossi,et al.  Bayesian analysis of stochastic volatility models with fat-tails and correlated errors , 2004 .

[25]  Michael A. West,et al.  GPU-Accelerated Bayesian Learning and Forecasting in Simultaneous Graphical Dynamic Linear Models , 2016 .

[26]  N. Shephard,et al.  Multivariate stochastic variance models , 1994 .

[27]  Matthew West,et al.  Bayesian factor regression models in the''large p , 2003 .

[28]  Manuel Mendoza,et al.  Dynamic Stock Selection Strategies: A Structured Factor Model Framework , 2012 .

[29]  Mike West,et al.  Bayesian Learning in Sparse Graphical Factor Models via Variational Mean-Field Annealing , 2010, J. Mach. Learn. Res..

[30]  M. McAleer,et al.  Multivariate Stochastic Volatility: A Review , 2006 .

[31]  Giorgio E. Primiceri Time Varying Structural Vector Autoregressions and Monetary Policy , 2002 .

[32]  D. F. Ahelegbey,et al.  Bayesian Graphical Models for Structural Vector Autoregressive Processes , 2012, Journal of Applied Econometrics.

[33]  Ryo Yoshida,et al.  Bayesian Learning in Sparse Graphical Factor Models via Annealed Entropy , 2010 .

[34]  Jeffrey S. Racine,et al.  Entropy and predictability of stock market returns , 2002 .

[35]  G. Koop,et al.  Bayesian Multivariate Time Series Methods for Empirical Macroeconomics , 2009 .

[36]  M. West,et al.  Bayesian forecasting and portfolio decisions using dynamic dependent sparse factor models , 2014 .

[37]  M. West,et al.  Bayesian Dynamic Factor Models and Portfolio Allocation , 2000 .

[38]  Michael I. Jordan,et al.  Bayesian parameter estimation via variational methods , 2000, Stat. Comput..

[39]  Robert Kohn,et al.  Multivariate Stochastic Volatility Models with Correlated Errors , 2005 .

[40]  Michael A. West,et al.  Dynamic matrix-variate graphical models , 2007 .

[41]  Jonas Schmitt Portfolio Selection Efficient Diversification Of Investments , 2016 .