Effect of Fe-site Substitution on Pressure-induced Spin Transition in SrFeO2

The effect of Fe-site substitution on structural and physical properties of the infinite layer iron oxide SrFeO2 was investigated under high pressure by 57Fe Mossbauer spectroscopy, X-ray diffraction, X-ray absorption spectroscopy, X-ray magnetic circular dichroism, and electrical resistance measurements using a diamond-anvil cell. Both 20% Mn- and Co-substituted samples exhibit spin transitions from a high-spin (S = 2) to an intermediate-spin (S = 1) state at Pc ∼ 32 GPa, which is much the same pressure 33 GPa observed in SrFeO2. This result indicates that the spin transition pressure is insensitive to the d-orbital electron counts [Mn2+ (d5), Fe2+ (d6), Co2+ (d7)], but is governed by the local structure around the Fe site.

[1]  Takafumi D. Yamamoto,et al.  Impact of Lanthanoid Substitution on the Structural and Physical Properties of an Infinite-Layer Iron Oxide. , 2016, Inorganic chemistry.

[2]  K. Shimizu,et al.  Electrical resistance of SrFeO2 at ultra high pressure , 2015 .

[3]  Yaozhuang Nie,et al.  Electronic structures and magnetism of SrFeO2 under pressure: a first-principles study. , 2013, Inorganic chemistry.

[4]  G. Wertheim Mössbauer Effect: Principles and Applications , 2013 .

[5]  D. Gianolio,et al.  SrFe0.5Ru0.5O2: square-planar Ru2+ in an extended oxide. , 2013, Journal of the American Chemical Society.

[6]  Hiroshi Maruyama,et al.  Glitch-free X-ray absorption spectrum under high pressure obtained using nano-polycrystalline diamond anvils , 2012, Journal of synchrotron radiation.

[7]  J. Alonso,et al.  Stabilization and study of SrFe(1-x)Mn(x)O2 oxides with infinite-layer structure. , 2011, Inorganic chemistry.

[8]  Takafumi D. Yamamoto,et al.  Random fan-out state induced by site-random interlayer couplings , 2011, 1109.2487.

[9]  Takafumi D. Yamamoto,et al.  Fe-site substitution effect on the structural and magnetic properties in SrFeO2. , 2011, Inorganic chemistry.

[10]  T. Kikegawa,et al.  Pressure-induced structural, magnetic, and transport transitions in the two-legged ladder Sr3Fe2O5. , 2011, Journal of the American Chemical Society.

[11]  M. Isobe,et al.  Synthesis and thermal stability of the solid solution AFeO2 (A = Ba, Sr, Ca). , 2010, Inorganic Chemistry.

[12]  Jon W. Taylor,et al.  Magnetic Excitations in Infinite-Layer Antiferromagnetic Insulator , 2010 .

[13]  J. Köhler,et al.  Magnetic materials: A striking transition. , 2009, Nature chemistry.

[14]  H. Kageyama,et al.  Spin transition in a four-coordinate iron oxide. , 2009, Nature chemistry.

[15]  J. M. Pruneda,et al.  CaFeO2: a new type of layered structure with iron in a distorted square planar coordination. , 2009, Journal of the American Chemical Society.

[16]  Takashi Watanabe,et al.  Spin-ladder iron oxide: Sr3Fe2O5. , 2008, Angewandte Chemie.

[17]  H. Kageyama,et al.  Single-crystal epitaxial thin films of SrFeO2 with FeO2 “infinite layers” , 2008 .

[18]  Takafumi D. Yamamoto,et al.  Stability of the infinite layer structure with iron square planar coordination. , 2008, Journal of the American Chemical Society.

[19]  H. Xiang,et al.  Origin of the structural and magnetic anomalies of the layered compound SrFeO2: a density functional investigation. , 2008, Physical review letters.

[20]  H. Kageyama,et al.  Infinite-layer iron oxide with a square-planar coordination , 2007, Nature.

[21]  V. Poltavets,et al.  La3Ni2O6: a new double T'-type nickelate with infinite Ni1+/2+O2 layers. , 2006, Journal of the American Chemical Society.

[22]  C. Bridges,et al.  New oxidation states and defect chemistry in the pyrochlore structure. , 2004, Angewandte Chemie.

[23]  Toru Inoue,et al.  Correction: Ultrahard polycrystalline diamond from graphite , 2003 .

[24]  S. Blundell,et al.  The Hydride Anion in an Extended Transition Metal Oxide Array: LaSrCoO3H0.7 , 2002, Science.

[25]  Taro Takahashi,et al.  X‐Ray Diffraction and Optical Observations on Crystalline Solids up to 300 kbar , 1967 .