A Review of Nanotechnology for Targeted Anti-schistosomal Therapy

Schistosomiasis is one of the major parasitic diseases and second most prevalent among the group of neglected diseases. The prevalence of schistosomiasis may be due to environmental and socio-economic factors, as well as the unavailability of vaccines for schistosomiasis. To date, current treatment; mainly the drug praziquantel (PZQ), has not been effective in treating the early forms of schistosome species. The development of drug resistance has been documented in several regions globally, due to the overuse of PZQ, rate of parasitic mutation, poor treatment compliance, co-infection with different strains of schistosomes and the overall parasite load. Hence, exploring the schistosome tegument may be a potential focus for the design and development of targeted anti-schistosomal therapy, with higher bioavailability as molecular targets using nanotechnology. This review aims to provide a concise incursion on the use of various advance approaches to achieve targeted anti-schistosomal therapy, mainly through the use of nano-enabled drug delivery systems. It also assimilates the molecular structure and function of the schistosome tegument and highlights the potential molecular targets found on the tegument, for effective specific interaction with receptors for more efficacious anti-schistosomal therapy.

[1]  Tayo Alex Adekiya,et al.  PZQ Therapy: How Close are we in the Development of Effective Alternative Anti-schistosomal Drugs? , 2019, Infectious disorders drug targets.

[2]  M. Mohammadi,et al.  Nanostructured lipid carriers of ivermectin as a novel drug delivery system in hydatidosis , 2019, Parasites & Vectors.

[3]  Zhang Mengying,et al.  Alendronate-modified polydopamine-coated paclitaxel nanoparticles for osteosarcoma-targeted therapy , 2019, Journal of Drug Delivery Science and Technology.

[4]  D. Carmena,et al.  Cryptosporidium infections in terrestrial ungulates with focus on livestock: a systematic review and meta-analysis , 2019, Parasites & Vectors.

[5]  Kei Xian Tan,et al.  Binding Characterization of Aptamer-Drug Layered Microformulations and In Vitro Release Assessment. , 2019, Journal of pharmaceutical sciences.

[6]  J. Javůrek,et al.  Targeting CD34+ cells of the inflamed synovial endothelium by guided nanoparticles for the treatment of rheumatoid arthritis. , 2019, Journal of autoimmunity.

[7]  E. Ruoslahti,et al.  Peptide-guided nanoparticles for glioblastoma targeting. , 2019, Journal of controlled release : official journal of the Controlled Release Society.

[8]  S. Payungporn,et al.  Phosphoproteomics analysis of male and female Schistosoma mekongi adult worms , 2019, Scientific Reports.

[9]  S. Saleh,et al.  A novel praziquantel solid lipid nanoparticle formulation shows enhanced bioavailability and antischistosomal efficacy against murine S. mansoni infection , 2019, Parasites & Vectors.

[10]  B. Pradines,et al.  Nucleoside-lipid-based nanocarriers for methylene blue delivery: potential application as anti-malarial drug , 2019, RSC advances.

[11]  T. Shalaby,et al.  Effect of nanoparticles on the therapeutic efficacy of praziquantel against Schistosoma mansoni infection in murine models , 2019, Journal of Parasitic Diseases.

[12]  J. A. Sarabia-Sainz,et al.  Lactosylated Albumin Nanoparticles: Potential Drug Nanovehicles with Selective Targeting Toward an In Vitro Model of Hepatocellular Carcinoma , 2019, Molecules.

[13]  S. Grant,et al.  Cationic carrier peptide enhances cerebrovascular targeting of nanoparticles in Alzheimer's disease brain. , 2019, Nanomedicine : nanotechnology, biology, and medicine.

[14]  O. Feron,et al.  Antibody-functionalized gold nanoparticles as tumor-targeting radiosensitizers for proton therapy. , 2019, Nanomedicine.

[15]  Juan Carlos del Alamo,et al.  Quantifying the mechanics of locomotion of the schistosome pathogen with respect to changes in its physical environment , 2019, bioRxiv.

[16]  G. G. Mekonnen,et al.  In-depth proteomic characterization of Schistosoma haematobium: Towards the development of new tools for elimination , 2018, bioRxiv.

[17]  Richard Barnett,et al.  Schistosomiasis , 2018, The Lancet.

[18]  A. Khamesipour,et al.  Novel Nanosized Chitosan-Betulinic Acid Against Resistant Leishmania Major and First Clinical Observation of such parasite in Kidney , 2018, Scientific Reports.

[19]  L. El-Khordagui,et al.  Praziquantel–lipid nanocapsules: an oral nanotherapeutic with potential Schistosoma mansoni tegumental targeting , 2018, International journal of nanomedicine.

[20]  A. Da'dara,et al.  Intravascular Schistosoma mansoni Cleave the Host Immune and Hemostatic Signaling Molecule Sphingosine-1-Phosphate via Tegumental Alkaline Phosphatase , 2018, Front. Immunol..

[21]  Wenli Zhang,et al.  Particle morphology: an important factor affecting drug delivery by nanocarriers into solid tumors , 2018, Expert opinion on drug delivery.

[22]  N. Grishin,et al.  Flatworm-specific transcriptional regulators promote the specification of tegumental progenitors in Schistosoma mansoni , 2018, eLife.

[23]  Jessica Siltberg-Liberles,et al.  Interaction of Peptide Aptamers with Prion Protein Central Domain Promotes α-Cleavage of PrPC , 2018, Molecular Neurobiology.

[24]  F. Wang,et al.  Aptamer–drug conjugate: targeted delivery of doxorubicin in a HER3 aptamer-functionalized liposomal delivery system reduces cardiotoxicity , 2018, International journal of nanomedicine.

[25]  A. J. Walker,et al.  Glucose Uptake in the Human Pathogen Schistosoma mansoni Is Regulated Through Akt/Protein Kinase B Signaling , 2017, The Journal of infectious diseases.

[26]  L. Rolim,et al.  Schistosomiasis: Drugs used and treatment strategies. , 2017, Acta tropica.

[27]  Daniel A. Richards,et al.  Forming next-generation antibody–nanoparticle conjugates through the oriented installation of non-engineered antibody fragments† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7sc02747h , 2017, Chemical science.

[28]  U. Simon,et al.  The effects of gold nanoparticles functionalized with ß-amyloid specific peptides on an in vitro model of blood-brain barrier. , 2017, Nanomedicine : nanotechnology, biology, and medicine.

[29]  R. Arya,et al.  Nanoparticle-Formulated Curcumin Prevents Posttherapeutic Disease Reactivation and Reinfection with Mycobacterium tuberculosis following Isoniazid Therapy , 2017, Front. Immunol..

[30]  R. Sinden,et al.  Adaptation of targeted nanocarriers to changing requirements in antimalarial drug delivery , 2017, Nanomedicine : nanotechnology, biology, and medicine.

[31]  Silvia Catuogno,et al.  Aptamer-Mediated Targeted Delivery of Therapeutics: An Update , 2016, Pharmaceuticals.

[32]  O. B. Ozdoganlar,et al.  Tip-Loaded Dissolvable Microneedle Arrays Effectively Deliver Polymer-Conjugated Antibody Inhibitors of Tumor-Necrosis-Factor-Alpha Into Human Skin. , 2016, Journal of pharmaceutical sciences.

[33]  M. Dkhil,et al.  Efficacy of Gold Nanoparticles against Nephrotoxicity Induced by Schistosoma mansoni Infection in Mice. , 2016, Biomedical and environmental sciences : BES.

[34]  J. A. Garcia-Salcedo,et al.  New Approaches to Overcome Transport Related Drug Resistance in Trypanosomatid Parasites , 2016, Front. Pharmacol..

[35]  J. Covès,et al.  From Peptide Aptamers to Inhibitors of FUR, Bacterial Transcriptional Regulator of Iron Homeostasis and Virulence. , 2016, ACS chemical biology.

[36]  J. Valdés,et al.  Fast evolutionary rates associated with functional loss in class I glucose transporters of Schistosoma mansoni , 2015, BMC Genomics.

[37]  M. Gremião,et al.  Effectiveness of hyperbaric oxygen for experimental treatment of schistosomiasis mansoni using praziquantel-free and encapsulated into liposomes: assay in adult worms and oviposition. , 2015, Acta tropica.

[38]  Rieko Furushima-Shimogawara,et al.  Immunogenicity and anti-fecundity effect of nanoparticle coated glutathione S-transferase (SjGST) DNA vaccine against murine Schistosoma japonicum infection. , 2015, Parasitology international.

[39]  A. Loukas,et al.  A quantitative proteomic analysis of the tegumental proteins from Schistosoma mansoni schistosomula reveals novel potential therapeutic targets. , 2015, International journal for parasitology.

[40]  D. Burz,et al.  Peptide aptamers: development and applications. , 2015, Current topics in medicinal chemistry.

[41]  Ching-Seng Ang,et al.  Monoclonal antibody-functionalized multilayered particles: targeting cancer cells in the presence of protein coronas. , 2015, ACS nano.

[42]  Mafalda Videira,et al.  In vivo delivery of peptides and Toll-like receptor ligands by mannose-functionalized polymeric nanoparticles induces prophylactic and therapeutic anti-tumor immune responses in a melanoma model. , 2015, Journal of controlled release : official journal of the Controlled Release Society.

[43]  Zhipeng Xu,et al.  An association of Aquaporin-4 with the immunoregulation of liver pathology in mice infected with Schistosoma japonicum , 2015, Parasites & Vectors.

[44]  D. Camidge Targeted therapy vs chemotherapy: which has had more impact on survival in lung cancer? Does targeted therapy make patients live longer? Hard to prove, but impossible to ignore. , 2014, Clinical advances in hematology & oncology : H&O.

[45]  M. K. Chourasia,et al.  Chitosan-Assisted Immunotherapy for Intervention of Experimental Leishmaniasis via Amphotericin B-Loaded Solid Lipid Nanoparticles , 2014, Applied Biochemistry and Biotechnology.

[46]  R. Wilson,et al.  Schistosome Feeding and Regurgitation , 2014, PLoS pathogens.

[47]  T. Day,et al.  Functional Characterization of a Novel Family of Acetylcholine-Gated Chloride Channels in Schistosoma mansoni , 2014, PLoS pathogens.

[48]  A. Guidi,et al.  Schistosomiasis control: praziquantel forever? , 2014, Molecular and biochemical parasitology.

[49]  G. Mor,et al.  Targeted cancer therapy--are the days of systemic chemotherapy numbered? , 2013, Maturitas.

[50]  M. Gremião,et al.  Liposomal-praziquantel: efficacy against Schistosoma mansoni in a preclinical assay. , 2013, Acta tropica.

[51]  S. Burgess,et al.  Functions and mechanics of dynein motor proteins , 2013, Nature Reviews Molecular Cell Biology.

[52]  Bin Liu,et al.  Inhibition of Hepatitis C Virus Infection by DNA Aptamer against Envelope Protein , 2013, Antimicrobial Agents and Chemotherapy.

[53]  V. Pillay,et al.  Ligand-functionalized nanoliposomes for targeted delivery of galantamine. , 2013, International journal of pharmaceutics.

[54]  N. Voelcker,et al.  Antibody‐Functionalized Porous Silicon Nanoparticles for Vectorization of Hydrophobic Drugs , 2013, Advanced healthcare materials.

[55]  A. S. Verkman,et al.  Aquaporins , 2013, Current Biology.

[56]  H. Tallima,et al.  Novel Therapeutic and Prevention Approaches for Schistosomiasis: Review , 2012, Journal of advanced research.

[57]  C. M. Rezende,et al.  Oral Vaccination Based on DNA-Chitosan Nanoparticles against Schistosoma mansoni Infection , 2012, TheScientificWorldJournal.

[58]  J. Moraes Antischistosomal Natural Compounds: Present Challenges for New Drug Screens , 2012 .

[59]  Chen Wang,et al.  Novel Aptamer-Nanoparticle Bioconjugates Enhances Delivery of Anticancer Drug to MUC1-Positive Cancer Cells In Vitro , 2011, PloS one.

[60]  M. Eissa,et al.  Bioactivity of miltefosine against aquatic stages of Schistosoma mansoni, Schistosoma haematobium and their snail hosts, supported by scanning electron microscopy , 2011, Parasites & Vectors.

[61]  R. Veerasamy,et al.  Biosynthesis of silver nanoparticles using mangosteen leaf extract and evaluation of their antimicrobial activities , 2011 .

[62]  J. Thomas-Oates,et al.  Enzymatic Shaving of the Tegument Surface of Live Schistosomes for Proteomic Analysis: A Rational Approach to Select Vaccine Candidates , 2011, PLoS neglected tropical diseases.

[63]  L. Cerchia,et al.  Targeting cancer cells with nucleic acid aptamers. , 2010, Trends in biotechnology.

[64]  J. West,et al.  Antibody-conjugated gold-gold sulfide nanoparticles as multifunctional agents for imaging and therapy of breast cancer , 2010, International journal of nanomedicine.

[65]  C. Shoemaker,et al.  Suppressing Glucose Transporter Gene Expression in Schistosomes Impairs Parasite Feeding and Decreases Survival in the Mammalian Host , 2010, PLoS pathogens.

[66]  F. Verrey,et al.  The Tegument of the Human Parasitic Worm Schistosoma mansoni as an Excretory Organ: The Surface Aquaporin SmAQP Is a Lactate Transporter , 2010, PloS one.

[67]  M. Gatton,et al.  Suppression of mRNAs Encoding Tegument Tetraspanins from Schistosoma mansoni Results in Impaired Tegument Turnover , 2010, PLoS pathogens.

[68]  A. Loukas,et al.  Exposed proteins of the Schistosoma japonicum tegument. , 2010, International journal for parasitology.

[69]  Zhu Chen,et al.  Schistosoma genomics: new perspectives on schistosome biology and host-parasite interaction. , 2009, Annual review of genomics and human genetics.

[70]  P. Skelly,et al.  The role of tegumental aquaporin from the human parasitic worm, Schistosoma monsoni, in osmoregulation and drug uptake , 2009, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[71]  Y. Zhang,et al.  The Schistosomiasis Control Initiative (SCI): rationale, development and implementation from 2002–2008 , 2009, Parasitology.

[72]  J. Utzinger,et al.  Praziquantel: mechanisms of action, resistance and new derivatives for schistosomiasis , 2008, Current opinion in infectious diseases.

[73]  C. Caffrey,et al.  Chemotherapy of schistosomiasis: present and future. , 2007, Current opinion in chemical biology.

[74]  Tamir Gonen,et al.  The structure of aquaporins , 2006, Quarterly Reviews of Biophysics.

[75]  R. Wilson,et al.  Proteomic analysis of the schistosome tegument and its surface membranes. , 2006, Memorias do Instituto Oswaldo Cruz.

[76]  J. Brouwers,et al.  Functions of the tegument of schistosomes: clues from the proteome and lipidome. , 2006, International journal for parasitology.

[77]  Zhu Chen,et al.  New Perspectives on Host-Parasite Interplay by Comparative Transcriptomic and Proteomic Analyses of Schistosoma japonicum , 2006, PLoS pathogens.

[78]  R. Pérez-Sánchez,et al.  Proteomic analysis of the tegument and excretory‐secretory products of adult Schistosoma bovis worms , 2006, Proteomics.

[79]  K. Longmuir,et al.  Effective Targeting of Liposomes to Liver and Hepatocytes In Vivo by Incorporation of a Plasmodium Amino Acid Sequence , 2006, Pharmaceutical Research.

[80]  S. Verjovski-Almeida,et al.  The tegument surface membranes of the human blood parasite Schistosoma mansoni: A proteomic analysis after differential extraction , 2006, Proteomics.

[81]  P. I. Costa,et al.  Improvement of antischistosomal activity of praziquantel by incorporation into phosphatidylcholine-containing liposomes. , 2005, International journal of pharmaceutics.

[82]  A. Capron,et al.  Schistosomes: the road from host-parasite interactions to vaccines in clinical trials. , 2005, Trends in parasitology.

[83]  J. Richter,et al.  The impact of chemotherapy on morbidity due to schistosomiasis. , 2003, Acta tropica.

[84]  E. Loker,et al.  Schistosoma mansoni and Biomphalaria: past history and future trends , 2001, Parasitology.

[85]  A. Kohn,et al.  Schistosome Calcium Channel β Subunits , 2001, The Journal of Biological Chemistry.

[86]  C. Shoemaker,et al.  The Schistosoma mansoni host-interactive tegument forms from vesicle eruptions of a cyton network , 2001, Parasitology.

[87]  Yuesheng Li,et al.  Immunogenicity and immunolocalization of the 22.6 kDa antigen of Schistosoma japonicum , 2000, Parasite immunology.

[88]  C. Shoemaker,et al.  Induction cues for tegument formation during the transformation of Schistosoma mansoni cercariae. , 2000, International journal for parasitology.

[89]  H. Saconato,et al.  Interventions for treating schistosomiasis mansoni. , 1999, The Cochrane database of systematic reviews.

[90]  D. McManus,et al.  Characterisation of a family of Schistosoma japonicum proteins related to dynein light chains. , 1999, Biochimica et biophysica acta.

[91]  C. Shoemaker,et al.  Glucose Transport and Metabolism in Mammalian-stage Schistosomes. , 1998, Parasitology today.

[92]  M. Hediger,et al.  Molecular Characterization of a Broad Selectivity Neutral Solute Channel* , 1998, The Journal of Biological Chemistry.

[93]  H. Kolbe,et al.  Characterization of a schistosome T cell-stimulating antigen (Sm10) associated with protective immunity in humans. , 1997, Molecular and biochemical parasitology.

[94]  K. Hoffmann,et al.  Molecular Identification of a Schistosoma mansoni Tegumental Protein with Similarity to Cytoplasmic Dynein Light Chains* , 1996, The Journal of Biological Chemistry.

[95]  C. Shoemaker,et al.  Rapid appearance and asymmetric distribution of glucose transporter SGTP4 at the apical surface of intramammalian-stage Schistosoma mansoni. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[96]  A. Agnew,et al.  Schistosoma: rate of glucose import is altered by acetylcholine interaction with tegumental acetylcholine receptors and acetylcholinesterase. , 1995, Experimental parasitology.

[97]  C. Shoemaker,et al.  Immunolocalization of a Schistosoma mansoni facilitated diffusion glucose transporter to the basal, but not the apical, membranes of the surface syncytium , 1995, Parasitology.

[98]  A. Choudhury,et al.  Chloroquine encapsulated in malaria-infected erythrocyte-specific antibody-bearing liposomes effectively controls chloroquine-resistant Plasmodium berghei infections in mice , 1995, Antimicrobial agents and chemotherapy.

[99]  J. Cunningham,et al.  Cloning, characterization, and functional expression of cDNAs encoding glucose transporter proteins from the human parasite Schistosoma mansoni. , 1994, The Journal of biological chemistry.

[100]  R. Prichard,et al.  Mechanisms of inactivation of Schistosoma mansoni and mammalian glutathione S-transferase activity by the antischistosomal drug oltipraz. , 1992, Biochemical pharmacology.

[101]  W. Harnett,et al.  Increased exposure of parasite antigens at the surface of adult male Schistosoma mansoni exposed to praziquantel in vitro , 1986, Parasitology.

[102]  P. Basch,et al.  Schistosoma mansoni: cholesterol uptake by paired and unpaired worms. , 1986, Experimental parasitology.

[103]  G. L. Uglem,et al.  Proterometra macrostoma (Trematoda:Azygiidae): functional morphology of the tegument of the redia. , 1985, International journal for parasitology.

[104]  P. Basch,et al.  Reproductive development of female Schistosoma mansoni (Digenea: Schistosomatidae) following bisexual pairing of worms and worm segments. , 1984, The Journal of experimental zoology.

[105]  H. Mehlhorn,et al.  Light and electron microscopic studies on the effect of praziquantel onSchistosoma mansoni, Dicrocoelium dendriticum, andFasciola hepatica (trematoda) in vitro , 1980, Zeitschrift für Parasitenkunde.

[106]  R. Pax,et al.  A benzodiazepine derivative and praziquantel: Effects on musculature of Schistosoma mansoni and Schistosoma japonicum , 1978, Naunyn-Schmiedeberg's Archives of Pharmacology.

[107]  R. Wilson,et al.  The formation and turnover of the membranocalyx on the tegument of Schistosoma mansoni , 1977, Parasitology.

[108]  E. Bueding,et al.  Anatomical localization of glucose uptake by Schistosoma mansoni adults. , 1975, International journal for parasitology.

[109]  G. L. Uglem,et al.  Sugar transport and metabolism in Schistosoma mansoni. , 1975, The Journal of parasitology.

[110]  R. Terry,et al.  The killing of adult Schistosoma mansoni in vitro in the presence of antisera to host antigenic determinants and peritoneal cells. , 1973, International journal for parasitology.

[111]  Tayo Alex Adekiya,et al.  Temperature and rainfall impact on schistosomiasis , 2018 .

[112]  S. Takeoka,et al.  Smart Liposomes for Drug Delivery , 2018 .

[113]  Malcolm K. Jones,et al.  Tegument and external Features of Schistosoma (with particular reference to ultrastructure) , 2017 .

[114]  H. Tallima,et al.  Biochemical and biophysical methodologies open the road for effective schistosomiasis therapy and vaccination. , 2017, Biochimica et biophysica acta. General subjects.

[115]  Weidong Chen,et al.  Preparation and In Vivo-In Vitro Evaluation of Polydatin-PhospholipidComplex with Improved Dissolution and Bioavailability , 2017 .

[116]  A. Loukas,et al.  Extracellular vesicles secreted by Schistosoma mansoni contain protein vaccine candidates. , 2016, International journal for parasitology.

[117]  M. Kašný,et al.  Cercaria of schistosoma , 2016 .

[118]  J. Boissier,et al.  Schistosomiasis chemotherapy. , 2013, Angewandte Chemie.

[119]  M. Katz Anthelmintics , 2012, Drugs.

[120]  B. Fried,et al.  Coinfection of Schistosoma (Trematoda) with bacteria, protozoa and helminths. , 2011, Advances in parasitology.

[121]  E. Albuquerque,et al.  Mammalian nicotinic acetylcholine receptors: from structure to function. , 2009, Physiological reviews.

[122]  R. Aman,et al.  Schistosoma spp.: Isolation of microtubule associated proteins in the tegument and the definition of dynein light chains components. , 2009, Experimental parasitology.

[123]  Manuel Arruebo,et al.  Antibody-conjugated nanoparticles for biomedical applications , 2009 .

[124]  J. M. Mansour,et al.  Chemotherapeutic Targets in Parasites: Targets in the Tegument of Flatworms , 2002 .

[125]  D. Cioli,et al.  Praziquantel , 2002, Parasitology Research.

[126]  S. Weremowicz,et al.  Functional and molecular characterization of the human neutral solute channel aquaporin-9. , 1999, The American journal of physiology.

[127]  B. Fried,et al.  The uptake, localization and transfer of [4-14C]cholesterol in Schistosoma mansoni males and females maintained in vitro. , 1985, Comparative biochemistry and physiology. A, Comparative physiology.

[128]  J. K. Frenkel,et al.  In vivo and in vitro experiments on the effects of praziquantel on Schistosoma mansoni. A light and electron microscopic study. , 1981, Arzneimittel-Forschung.

[129]  D. Clayson,et al.  Carcinogenic effects of niridazole. , 1975, Cancer letters.

[130]  H. Isseroff,et al.  Studies on membrane transport—VIII. Absorption of monosaccharides by Fasciola hepatica , 1974 .