Crystal chemistry and thermal behavior of Fe-carpholite from the Pollino Massif, southern Italy

Abstract The crystal chemistry and thermal behavior of Fe-carpholite from the Pollino Massif have been investigated by a multi-method approach. A combination of optical microscopy, scanning electron microscopy, mRaman spectroscopy, thermal analysis, room-temperature single-crystal X‑ray diffraction, and high-temperature X‑ray powder diffraction was employed. Field and micromorphological observations showed that the studied carpholite occurs in veins embedded in fine-grained matapelites and coexist with quartz, calcite, chlorite, and phengite. In particular, the tiny carpholite crystals are closely associated with quartz, suggesting simultaneous formation. Structure refinements from single-crystal X‑ray diffraction confirm that carpholite crystallizes in the Ccce space group. Anisotropic refinements converged at 2.3 ≤ R (%) ≤ 2.6 and yielded unit-cell parameters a ~13.77 Å, b ~20.16 Å, c ~5.11 Å, and V ~1419 Å3. An XFe [i.e., the molar fraction Fe2+/(Mg+Fe2++Mn)] of ~0.6 was derived from the refined occupancy at the M 1 site and is correlated to structural expansion mainly along the b and a axes and to geometrical distortions of the M 1, M2, and M3 octahedra. mRaman spectrum of unoriented Fe-carpholite crystals exhibits several bands in the 200–1200 cm–1 region, a strong peak at 3630 cm–1 and a weak peak at 3593 cm–1, the latter two of which account for the presence of two independent OH groups, as also revealed by the X‑ray structure refinement. The TG curve indicates a total mass loss of 15.6% in the temperature range 30–1000 °C, and the DTA curve shows a broad endothermic band at ~400 °C, extending up to ~650 °C, and weak exothermic peaks at ~700 and 750 °C. The latter may be ascribed to the breakdown of the Fe-carpholite structure and crystallization of new phases. The in situ high-temperature X‑ray powder diffraction from 30 to 1105 °C revealed no significant changes in XRD patterns from 30 to 355 °C but reflection splittings from 380 °C due to a Fe-oxidation/deprotonation process. The carpholite and deprotonated carpholite phases coexist in the temperature range 380–580 °C, whereas only the deprotonated phase is observed up to 630 °C. Above this temperature, the carpholite structure collapses and the characteristic peaks of spinel and quartz phases are observed. At 1105 °C, spinel, mullite, garnet, cristobalite, and tridymite can be clearly identified. Our results provide insight into the thermal stability of Fe-carpholites and may help understand the thermal evolution of HP/LT metasediments.

[1]  Maria Carmela Dichicco,et al.  P-T estimates from amphibole and plagioclase pairs in metadolerite dykes of the Frido unit (southern Apennines-Italy) during the ocean-floor metamorphism , 2019 .

[2]  Giovanna Rizzo,et al.  Blueschist metamorphism of metabasite dykes in the serpentinites of the Frido Unit, Pollino Massif , 2018, Rendiconti Online della Società Geologica Italiana.

[3]  Uwe Altenberger,et al.  The Timpa delle Murge ophiolitic gabbros, southern Apennines: insights from petrology and geochemistry and consequences to the geodynamic setting , 2018 .

[4]  Michele Paternoster,et al.  Genesis of carbonate-rich veins in the serpentinites at the Calabria-Lucania boundary (southern Apennines) , 2018 .

[5]  Maria Carmela Dichicco,et al.  μ-Raman spectroscopy and X-ray diffraction of asbestos' minerals for geo-environmental monitoring: The case of the southern Apennines natural sources , 2017 .

[6]  F. Perri,et al.  Mineralogy and petrology of the metasedimentary rocks from the Frido Unit (southern Apennines, Italy) , 2016 .

[7]  Michele Paternoster,et al.  Serpentinite Carbonation for CO2 Sequestration in the Southern Apennines: Preliminary Study , 2015 .

[8]  W. Simka,et al.  Study on the thermal decomposition of crocidolite asbestos , 2015, Journal of Thermal Analysis and Calorimetry.

[9]  R. Oberhänsli,et al.  Multistage growth of Fe–Mg–carpholite and Fe–Mg–chloritoid, from field evidence to thermodynamic modelling , 2014, Contributions to Mineralogy and Petrology.

[10]  A. Chakhmouradian,et al.  Crystal structure and topological affinities of magbasite, KBaFe3+Mg7Si8O22(OH)2F6: a trellis structure related to amphibole and carpholite , 2014, Mineralogical Magazine.

[11]  Giacomo Prosser,et al.  Geochronological study of zircons from continental crust rocks in the Frido Unit (southern Apennines) , 2014, International Journal of Earth Sciences.

[12]  R. Oberhänsli,et al.  Late Cretaceous eclogitic high-pressure relics in the Bitlis Massif , 2013 .

[13]  Sabatino Ciarcia,et al.  Structural and petrological analyses of the Frido Unit (southern Italy): New insights into the early tectonic evolution of the southern Apennines–Calabrian Arc system , 2013 .

[14]  Brian H. Toby,et al.  GSAS‐II: the genesis of a modern open‐source all purpose crystallography software package , 2013 .

[15]  Giovanna Rizzo,et al.  Pumpellyite veins in the metadolerite of the Frido Unit (Southern Apennines - Italy) , 2012 .

[16]  B. Dubacq,et al.  How continuous and precise is the record of P–T paths? Insights from combined thermobarometry and thermodynamic modelling into subduction dynamics (Schistes Lustrés, W. Alps) , 2012 .

[17]  A. Brogi,et al.  Tectono-metamorphic evolution of the siliciclastic units in the Middle Tuscan Range (inner Northern Apennines): Mg–carpholite bearing quartz veins related to syn-metamorphic syn-orogenic foliation , 2012 .

[18]  G. Prosser,et al.  Spinel-peridotites of the Frido Unit ophiolites (Southern Apennine-Italy): evidence for oceanic evolution , 2012 .

[19]  Giacomo Prosser,et al.  From ocean to subduction: the polyphase metamorphic evolution of the Frido Unit metadolerite dikes (Southern Apennine, Italy) , 2012 .

[20]  A. Pérez-Estaún,et al.  Tectonometamorphic evolution of the Samaná complex, northern Hispaniola: Implications for the burial and exhumation of high-pressure rocks in a collisional accretionary wedge , 2011 .

[21]  Giovanna Rizzo,et al.  Petrochemical characterization of mafic rocks from the Ligurian ophiolites, southern Apennines , 2011 .

[22]  F. Brunet,et al.  Metamorphic veining and mass transfer in a chemically closed system: a case study in Alpine metabauxites (western Vanoise) , 2010 .

[23]  G. Ventruti,et al.  Kinetics of Fe-oxidation/deprotonation process in Fe-rich phlogopite under isothermal conditions , 2010 .

[24]  Carmelo Monaco,et al.  Ophiolite‐bearing mélanges in southern Italy , 2009 .

[25]  G. Pedrazzi,et al.  Thermal behavior of a Ti-rich phlogopite from Mt. Vulture (Potenza, Italy): An in situ X-ray single-crystal diffraction study , 2008 .

[26]  S. Schmid,et al.  Metamorphism of metasediments at the scale of an orogen: a key to the Tertiary geodynamic evolution of the Alps* , 2008 .

[27]  Gervais Chapuis,et al.  SUPERFLIP– a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions , 2007 .

[28]  G. Shu,et al.  Eclogite and carpholite‐bearing metasedimentary rocks in the North Qilian suture zone, NW China: implications for Early Palaeozoic cold oceanic subduction and water transport into mantle , 2007 .

[29]  E. Patacca,et al.  Geology of the Southern Apennines , 2007 .

[30]  KRrsntnuooRTHy YlswnNernnn The crystal structure of a Mg-rich carpholite , 2007 .

[31]  L. Jolivet,et al.  Evidence of retrograde Mg-carpholite in the Phyllite-Quartzite nappe of Peloponnese from thermobarometric modelisation - geodynamic implications , 2006 .

[32]  R. Jacimovic,et al.  Minerals from Macedonia. XVI. Vibrational spectra of some common appearing pyroxenes and pyroxenoids , 2006 .

[33]  T. Theye,et al.  Calorimetric data for naturally occurring magnesiocarpholite and ferrocarpholite , 2006 .

[34]  L. Jolivet,et al.  The wide distribution of HP-LT rocks in the Lycian Belt (Western Turkey): implications for accretionary wedge geometry , 2006, Geological Society, London, Special Publications.

[35]  P. Agard,et al.  Discovery of Paleozoic Fe-Mg carpholite in Motalafjella, Svalbard Caledonides: A milestone for subduction-zone gradients , 2005 .

[36]  G. Rimmelé,et al.  Alpine high-P/low-T metamorphism of the Afyon Zone and implications for the metamorphic evolution of Western Anatolia, Turkey , 2005 .

[37]  L. Jolivet,et al.  Exhumation Paths of High-Pressure-Low- Temperature Metamorphic Rocks from the Lycian Nappes and the Menderes Massif (SW Turkey): a Multi-Equilibrium Approach , 2005 .

[38]  C. Faccenna,et al.  Alpine orogenic P‐T‐t‐deformation history of the Catena Costiera area and surrounding regions (Calabrian Arc, southern Italy): The nappe edifice of north Calabria revised with insights on the Tyrrhenian‐Apennine system formation , 2004 .

[39]  K. Tait,et al.  POTASSIC-CARPHOLITE, A NEW MINERAL SPECIES FROM THE SAWTOOTH BATHOLITH, BOISE COUNTY, IDAHO, U.S.A. , 2004 .

[40]  Richard I. Cooper,et al.  CRYSTALS version 12: software for guided crystal structure analysis , 2003 .

[41]  L. Jolivet,et al.  First evidence of high-pressure metamorphism in the “Cover Series” of the southern Menderes Massif. Tectonic and metamorphic implications for the evolution of SW Turkey , 2003 .

[42]  I. Brown Topology and Chemistry , 2002 .

[43]  J. Azañón,et al.  High-pressure, low-temperature metamorphism in Alpujarride Units of southeastern Betics (Spain) , 2002 .

[44]  L. Jolivet,et al.  Tectonometamorphic evolution of the Schistes Lustres Complex; implications for the exhumation of HP and UHP rocks in the Western Alps , 2001 .

[45]  M. Mellini,et al.  Crystal-chemistry of magnesiocarpholite: controversial X-ray diffraction, Mössbauer, FTIR and Raman results , 2001 .

[46]  R. Oberhänsli,et al.  First occurrence of Fe-Mg-carpholite documenting a high-pressure metamorphism in metasediments of the Lycian Nappes, SW Turkey , 2001 .

[47]  C. Faccenna,et al.  Alpine structural and metamorphic signature of the Sila Piccola Massif nappe stack (Calabria, Italy): Insights for the tectonic evolution of the Calabrian Arc , 2001 .

[48]  L. Jolivet,et al.  Syn- versus post-orogenic extension: the case study of Giglio Island (Northern Tyrrhenian Sea, Italy) , 1999 .

[49]  B. Goffé,et al.  Metamorphic evolution of Verrucano metasediments in Northern Apennines; new petrological constraints , 1998 .

[50]  S. Mazzoli,et al.  Apennine tectonics in southern Italy: a review , 1998 .

[51]  L. Jolivet,et al.  High‐pressure–low‐temperature metamorphism and deformation in the Bündnerschiefer of the Engadine window: implications for the regional evolution of the eastern Central Alps , 1998 .

[52]  L. Jolivet,et al.  Ferro- and magnesiocarpholite from the Monte Argentario (Italy); first evidence for high-pressure metamorphism of the metasedimentary Verrucano sequence, and significance for P-T path reconstruction , 1997 .

[53]  L. Tortorici,et al.  Geologia del versante nord-orientale del Massiccio del Pollino (confine calabro-lucano); nota illustrativa sintetica della carta geologica alla scala 1:50.000 , 1995 .

[54]  Steven D. Knott,et al.  Structure, kinematics and metamorphism in the Liguride Complex, southern Apennines, Italy , 1994 .

[55]  B. Goffé,et al.  Experimental study of the stability of sudoite and magnesiocarpholite and calculation of a new petrogenetic grid for the system FeO–MgO–Al2O3–SiO2–H2O , 1992 .

[56]  B. Goffé,et al.  Ferro- and magnesiocarpholite in the "Buendnerschiefer" of the eastern Central Alps (Grisons and Engadine window) , 1992 .

[57]  O. Vidal,et al.  Carpholite, sudoite, and chloritoid in low-grade high-pressure metapelites from Crete and the Peloponnese, Greece , 1992 .

[58]  G. Ciampo,et al.  Il Complesso Liguride Auct.: stato delle conoscenze e problemi aperti sulla sua evoluzione preappenninica ed i suoi rapporti con l'arco calabro. , 1992 .

[59]  B. Goffé,et al.  A case of obduction-related high-pressure, low-temperature metamorphism in upper crustal nappes, Arabian continental margin, Oman: P-T paths and kinematic interpretation , 1988 .

[60]  Steven D. Knott,et al.  The Liguride Complex of Southern Italy —a Cretaceous to Paleogene accretionary wedge , 1987 .

[61]  M. Zhesheng,et al.  THE REFINEMENT OF CRYSTAL STRUCTURE OF BALIPHOLITE , 1987 .

[62]  G. Lehmann,et al.  Correlation of angular and bond length distortions in TO4 units in crystals , 1986 .

[63]  I. D. Brown,et al.  Bond‐valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database , 1985 .

[64]  B. Goffé Magnésiocarpholite, cookéite et euclase dans les niveaux continentaux métamorphiques de la zone briançonnaise. Données minéralogiques et nouvelles occurrences , 1980 .

[65]  E. Seidel,et al.  Crystal chemistry of Fe-Mg-carpholites , 1979 .

[66]  Y. Aoki THERMAL REACTION OF CARPHOLITE , 1966 .

[67]  C. Macgillavry,et al.  The crystal structure of ferrocarpholite , 1956 .

[68]  Lucchetti,et al.  Vanadiocarpholite , Mn 2 + V 3 + Al ( Si 2 O 6 ) ( OH ) 4 , a new mineral from the Molinello mine , northern Apennines , Italy , 2022 .