Isotopic composition of gadolinium and neutron‐capture effects in some meteorites

The isotopic composition of Gd in one chondrite, two achondrites, and the silicate inclusions of two iron meteorites has been determined. When corrected for mass discrimination, Gd in all samples except the Norton County achondrite shows the same relative isotopic abundances as terrestrial Gd. These results set an upper limit of 3×10^(15) neutrons per cm^2 on a differential integrated thermal neutron irradiation of the earth and these meteorites. Neutron-capture effects are present in Gd extracted from the Norton County achondrite. These most probably have been produced by secondary neutrons during the exceptionally long cosmic ray exposure of this large stone meteorite. The isotopic anomalies correspond to an integrated thermal neutron flux of (6.3±0.9)×10^(15) neutrons per cm^2. The percent abundances of terrestrial Gd found in our work for Gd^(160), Gd^(158), Gd^(157), Gd^(156), Gd^(155), Gd^(154), and Gd^(152) are 21.863, 24.835, 15.652, 20.466, 14.800, 2.1809, and 0.2029, respectively. Because of the higher precision, these abundances should replace the currently accepted values.

[1]  J. Geiss,et al.  Isotopic analyses of krypton and xenon in fourteen stone meteorites , 1969 .

[2]  G. Wasserburg,et al.  Isotopic analyses of barium in meteorites and in terrestrial samples. , 1969 .

[3]  G. Wasserburg,et al.  A Programmable Magnetic Field Mass Spectrometer with On-Line Data Processing , 1969 .

[4]  G. Wasserburg,et al.  Ages of Silicate Inclusions in Iron Meteorites , 1968 .

[5]  G. Wasserburg,et al.  40Ar40K ages of silicate inclusions in iron meteorites , 1967 .

[6]  J. Geiss,et al.  Spallation, Fission, and Neutron Capture Anomalies in Meteoritic Krypton and Xenon , 1966 .

[7]  J. Geiss,et al.  RARE GAS MEASUREMENTS IN 30 STONE METEORITES , 1966 .

[8]  G. Wasserburg,et al.  The relative isotopic abundance of K^(40) in terrestrial and meteoritic samples , 1966 .

[9]  L. Haskin,et al.  Meteoritic, solar and terrestrial rare-earth distributions. , 1966 .

[10]  F. Hoyle,et al.  Nucleosynthesis in the early history of the solar system , 1965 .

[11]  J. Geiss,et al.  RADIATION AGES OF AUBRITES , 1965 .

[12]  V. Murthy,et al.  Isotope abundances of rare‐earth elements in meteorites: 1. Implications of samarium, europium, and gadolinium to the early history of the solar system , 1963 .

[13]  T. Kirsten,et al.  Edelgas- und kalium-bestimmungen an einer gröβeren zahl von steinmeteoriten , 1963 .

[14]  D. Lal,et al.  Record of cosmic-ray intensity in the meteorites , 1961 .

[15]  F. Hoyle,et al.  Nucleosynthesis during the Early History of the Solar System. , 1961 .

[16]  F. J. Shore,et al.  LOW-ENERGY NEUTRON RESONANCES IN ERBIUM AND GADOLINIUM , 1960 .

[17]  D. C. Hess,et al.  RADIATION AGE OF A METEORITE FROM COSMIC-RAY-PRODUCED He$sup 3$ AND H$sup 3$ , 1957 .

[18]  F. A. White,et al.  MASS SPECTROMETRIC INVESTIGATION OF THE RARE EARTH ELEMENTS FOR THE EXISTENCE OF NEW STABLE ISOTOPES , 1957 .

[19]  H. B. Wiik,et al.  The chemical composition of some stony meteorites , 1956 .

[20]  A. Nier,et al.  A Redetermination of the Relative Abundances of the Isotopes of Carbon, Nitrogen, Oxygen, Argon, and Potassium , 1950 .