ON THE CONSTRUCTION OF EFFICIENT METHODS FOR SECOND ORDER IVPS WITH OSCILLATING SOLUTION
暂无分享,去创建一个
[1] T. Simos. High Algebraic Order Methods with Minimal Phase-Lag for Accurate Solution of the Schrödinger Equation , 1998 .
[2] T. E. Simos,et al. EXPONENTIALLY FITTED RUNGE–KUTTA FOURTH ALGEBRAIC ORDER METHODS FOR THE NUMERICAL SOLUTION OF THE SCHRÖDINGER EQUATION AND RELATED PROBLEMS , 1999 .
[3] José M. Ferrándiz,et al. A General Procedure For the Adaptation of Multistep Algorithms to the Integration of Oscillatory Problems , 1998 .
[4] Xiao-yan Liu,et al. Numerical solution of one‐dimensional time‐independent Schrödinger equation by using symplectic schemes , 2000 .
[5] D. G. Bettis,et al. Stabilization of Cowell's method , 1969 .
[6] J. M. Franco,et al. High-order P-stable multistep methods , 1990 .
[7] Theodore E. Simos,et al. A Family of Numerov-type Exponentially Fitted Methods for the Numerical Integration of the Schrödinger Equation , 1997, Comput. Chem..
[8] J. Lambert,et al. Symmetric Multistip Methods for Periodic Initial Value Problems , 1976 .
[9] T. E. Simos,et al. A sixth-order exponentially fitted method for the numerical solution of the radial , 1990 .
[10] T. E. Simos,et al. SIMPLE AND ACCURATE EXPLICIT BESSEL AND NEUMANN FITTED METHODS FOR THE NUMERICAL SOLUTION OF THE SCHRÖDINGER EQUATION , 2000 .
[11] T. E. Simos,et al. A generator of high-order embedded P-stable methods for the numerical solution of the Schro¨dinger equation , 1996 .
[12] G. Avdelas,et al. Dissipative high phase-lag order numerov-type methods for the numerical solution of the Schrodinger equation , 2000 .
[13] A. D. Raptis,et al. A four-step phase-fitted method for the numerical integration of second order initial-value problems , 1991 .
[14] T. E. Simos. Predictor-corrector phase-fitted methods for Y{double_prime} = F(X,Y) and an application to the Schroedinger equation , 1995 .
[15] Jesús Vigo-Aguiar,et al. AN ADAPTED SYMPLECTIC INTEGRATOR FOR HAMILTONIAN PROBLEMS , 2001 .
[16] John M. Blatt,et al. Practical points concerning the solution of the Schrödinger equation , 1967 .
[17] M. M. Chawla,et al. Numerov made explicit has better stability , 1984 .
[18] Tom Lyche,et al. Chebyshevian multistep methods for ordinary differential equations , 1972 .
[19] T. E. Simos,et al. Embedded methods for the numerical solution of the Schrödinger equation , 1996 .
[21] S. Tremaine,et al. Symmetric Multistep Methods for the Numerical Integration of Planetary Orbits , 1990 .
[22] A. C. Allison,et al. The numerical solution of coupled differential equations arising from the Schrödinger equation , 1970 .
[23] Theodore E. Simos,et al. On Finite Difference Methods for the Solution of the Schrödinger Equation , 1999, Comput. Chem..
[24] Tom E. Simos,et al. An Eighth-Order Method With Minimal Phase-Lag For Accurate Computations For The Elastic Scattering Phase-Shift Problem , 1996 .
[25] T. E. Simos. NEW NUMEROV-TYPE METHODS FOR COMPUTING EIGENVALUES, RESONANCES, AND PHASE SHIFTS OF THE RADIAL SCHRODINGER EQUATION , 1997 .
[26] A. D. Raptis,et al. A variable step method for the numerical integration of the one-dimensional Schrödinger equation , 1985 .
[27] T. E. Simos,et al. Some new Numerov-type methods with minimal phase lag for the numerical integration of the radial Schrödinger equation , 1994 .
[28] Moawwad E. A. El-Mikkawy,et al. High-Order Embedded Runge-Kutta-Nystrom Formulae , 1987 .
[29] T. Simos. EIGHTH-ORDER METHOD FOR ACCURATE COMPUTATIONS FOR THE ELASTIC SCATTERING PHASE-SHIFT PROBLEM , 1998 .
[30] T. E. Simos,et al. A Family Of Numerov-Type Exponentially Fitted Predictor-Corrector Methods For The Numerical Integrat , 1996 .
[31] A. C. Allison,et al. Exponential-fitting methods for the numerical solution of the schrodinger equation , 1978 .
[32] M. M. Chawla,et al. An explicit sixth-order method with phase-lag of order eight for y ″= f ( t , y ) , 1987 .
[33] Tom E. Simos. A New Numerov-Type Method For Computing Eigenvalues And Resonances Of The Radial Schrödinger Equation , 1996 .
[34] T. Simos. An Eighth Order Exponentially Fitted Method for the Numerical Solution of the Schrödinger Equation , 1998 .