Sparse Greedy Minimax Probability Machine Classification

The Minimax Probability Machine Classification (MPMC) framework [Lanckriet et al., 2002] builds classifiers by minimizing the maximum probability of misclassification, and gives direct estimates of the probabilistic accuracy bound Ω. The only assumptions that MPMC makes is that good estimates of means and covariance matrices of the classes exist. However, as with Support Vector Machines, MPMC is computationally expensive and requires extensive cross validation experiments to choose kernels and kernel parameters that give good performance. In this paper we address the computational cost of MPMC by proposing an algorithm that constructs nonlinear sparse MPMC (SMPMC) models by incrementally adding basis functions (i.e. kernels) one at a time – greedily selecting the next one that maximizes the accuracy bound Ω. SMPMC automatically chooses both kernel parameters and feature weights without using computationally expensive cross validation. Therefore the SMPMC algorithm simultaneously addresses the problem of kernel selection and feature selection (i.e. feature weighting), based solely on maximizing the accuracy bound Ω. Experimental results indicate that we can obtain reliable bounds Ω, as well as test set accuracies that are comparable to state of the art classification algorithms.