A trust region algorithm with adaptive cubic regularization methods for nonsmooth convex minimization

By using the Moreau-Yosida regularization and proximal method, a new trust region algorithm is proposed for nonsmooth convex minimization. A cubic subproblem with adaptive parameter is solved at each iteration. The global convergence and Q-superlinear convergence are established under some suitable conditions. The overall iteration bound of the proposed algorithm is discussed. Preliminary numerical experience is reported.

[1]  L. Luksan,et al.  Globally Convergent Variable Metric Method for Convex Nonsmooth Unconstrained Minimization1 , 1999 .

[2]  Liping Zhang,et al.  A new trust region algorithm for nonsmooth convex minimization , 2007, Appl. Math. Comput..

[3]  Liqun Qi,et al.  Convergence Analysis of Some Algorithms for Solving Nonsmooth Equations , 1993, Math. Oper. Res..

[4]  Liqun Qi,et al.  An SQP algorithm for extended linear-quadratic problems in stochastic programming , 1995, Ann. Oper. Res..

[5]  Defeng Sun,et al.  Semismoothness of solutions to generalized equations and the Moreau-Yosida regularization , 2005, Math. Program..

[6]  Liqun Qi,et al.  A new method for nonsmooth convex optimization , 1998 .

[7]  Yurii Nesterov,et al.  Accelerating the cubic regularization of Newton’s method on convex problems , 2005, Math. Program..

[8]  Yurii Nesterov,et al.  Cubic regularization of Newton method and its global performance , 2006, Math. Program..

[9]  Jochem Zowe,et al.  A Version of the Bundle Idea for Minimizing a Nonsmooth Function: Conceptual Idea, Convergence Analysis, Numerical Results , 1992, SIAM J. Optim..

[10]  Claude Lemaréchal,et al.  Practical Aspects of the Moreau-Yosida Regularization: Theoretical Preliminaries , 1997, SIAM J. Optim..

[11]  Nicholas I. M. Gould,et al.  Adaptive cubic regularisation methods for unconstrained optimization. Part I: motivation, convergence and numerical results , 2011, Math. Program..

[12]  Liqun Qi,et al.  A trust region algorithm for minimization of locally Lipschitzian functions , 1994, Math. Program..

[13]  Nicholas I. M. Gould,et al.  Adaptive cubic regularisation methods for unconstrained optimization. Part II: worst-case function- and derivative-evaluation complexity , 2011, Math. Program..

[14]  Mark Goh,et al.  Lagrangian-Dual Functions and Moreau--Yosida Regularization , 2008, SIAM J. Optim..

[15]  Liqun Qi,et al.  A nonsmooth version of Newton's method , 1993, Math. Program..

[16]  Liqun Qi,et al.  Convergence Analysis of Some Methods for Minimizing a Nonsmooth Convex Function , 1998 .

[17]  F. Meng,et al.  On Second-Order Properties of the Moreau–Yosida Regularization for Constrained Nonsmooth Convex Programs , 2004 .

[18]  J. Pang,et al.  A globally convergent Newton method for convex SC1 minimization problems , 1995 .

[19]  Krzysztof C. Kiwiel,et al.  Proximal level bundle methods for convex nondifferentiable optimization, saddle-point problems and variational inequalities , 1995, Math. Program..

[20]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[21]  J. Hiriart-Urruty,et al.  Convex analysis and minimization algorithms , 1993 .

[22]  L. Qi,et al.  A General Approach to Convergence Properties of Some Methods for Nonsmooth Convex Optimization , 1998 .

[23]  Richard A. Tapia,et al.  A unified approach to global convergence of trust region methods for nonsmooth optimization , 1995, Math. Program..

[24]  Masao Fukushima,et al.  A Globally and Superlinearly Convergent Algorithm for Nonsmooth Convex Minimization , 1996, SIAM J. Optim..

[25]  Masao Fukushima,et al.  A descent algorithm for nonsmooth convex optimization , 1984, Math. Program..

[26]  Claude Lemaréchal,et al.  Convergence of some algorithms for convex minimization , 1993, Math. Program..

[27]  Nicholas I. M. Gould,et al.  Trust Region Methods , 2000, MOS-SIAM Series on Optimization.

[28]  J. Frédéric Bonnans,et al.  A family of variable metric proximal methods , 1995, Math. Program..

[29]  Z. Wei,et al.  Convergence analysis of a proximal newton method 1 , 1996 .