Flexibility and Reusability in the Digital Front-End of Cognitive Radio Terminals

Emerging communication paradigms like the cognitive radio require extremely flexible physical layer functional units that can be parameterized at runtime for supporting multiple modes. Parameterizing the hardware accelerators in the cognitive radio baseband incurs a latency penalty, which is a function of the amount of reconfiguration data required by the accelerators. In an opportunistic spectrum access scenario, the cumulative latency required to reconfigure all the physical layer units when switching to a new channel reduces the useful time available for transmission, leading to a lower system throughput. Against this background, this paper gives an overview of the amount of reconfiguration data required by different candidate accelerator architectures for performing the computationally intensive channelization function, in the digital front-end of the cognitive radio terminal. The paper also identifies opportunities for reusing hardwired stages of a channelization accelerator across multiple modes, while minimizing the reconfiguration overhead.

[1]  Ian F. Akyildiz,et al.  Optimal spectrum sensing framework for cognitive radio networks , 2008, IEEE Transactions on Wireless Communications.

[2]  V. Chaiyakul,et al.  Essential issues for IP reuse , 2000, Proceedings 2000. Design Automation Conference. (IEEE Cat. No.00CH37106).

[3]  Sai Shankar Nandagopalan,et al.  IEEE 802.22: An Introduction to the First Wireless Standard based on Cognitive Radios , 2006, J. Commun..

[4]  Cedric Nishan Canagarajah,et al.  Perceptually optimised sign language video coding , 2003, 10th IEEE International Conference on Electronics, Circuits and Systems, 2003. ICECS 2003. Proceedings of the 2003.

[5]  Gerhard Fettweis,et al.  The digital front-end of software radio terminals , 1999, IEEE Wirel. Commun..

[6]  Kaushik Roy,et al.  Synthesis of application-specific highly-efficient multi-mode systems for low-power applications , 2003, 2003 Design, Automation and Test in Europe Conference and Exhibition.

[7]  Dake Liu,et al.  An accelerator structure for programmable multi-standard baseband processors , 2004 .

[8]  Giovanni De Micheli,et al.  Synthesis and Optimization of Digital Circuits , 1994 .

[9]  Miodrag Potkonjak,et al.  Multiple constant multiplications: efficient and versatile framework and algorithms for exploring common subexpression elimination , 1996, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[10]  Daniel D. Gajski,et al.  Embedded tutorial: essential issues for IP reuse , 2000, ASP-DAC '00.

[11]  Tughrul Arslan,et al.  Low power FIR filter implementations based on coefficient ordering algorithm , 2004, IEEE Computer Society Annual Symposium on VLSI.

[12]  Ian F. Akyildiz,et al.  Cooperative spectrum sensing in cognitive radio networks: A survey , 2011, Phys. Commun..

[13]  Hui Wang,et al.  A Survey on MAC Protocols for Opportunistic Spectrum Access in Cognitive Radio Networks , 2008, 2008 International Conference on Computer Science and Software Engineering.

[14]  A. Willson,et al.  A programmable FIR digital filter using CSD coefficients , 1996 .

[15]  A. Prasad Vinod,et al.  New Reconfigurable Architectures for Implementing FIR Filters With Low Complexity , 2010, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[16]  Shigang Wang,et al.  An Effective Soccer Video Shot Detection Algorithm , 2008, 2008 International Conference on Computer Science and Software Engineering.

[17]  E. Dujardin,et al.  Architecture of a programmable FIR filter co-processor , 1998, ISCAS '98. Proceedings of the 1998 IEEE International Symposium on Circuits and Systems (Cat. No.98CH36187).

[18]  G. Ganesan,et al.  Cooperative spectrum sensing in cognitive radio networks , 2005, First IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, 2005. DySPAN 2005..

[19]  Kees Moerman,et al.  Vector Processing as an Enabler for Software-Defined Radio in Handheld Devices , 2005, EURASIP J. Adv. Signal Process..

[20]  Jarkko Niittylahti,et al.  Adaptive FIR filter architectures for run-time reconfigurable FPGAs , 2002, 2002 IEEE International Conference on Field-Programmable Technology, 2002. (FPT). Proceedings..

[21]  Wei Shaojun,et al.  Parameterized IP core design , 2001, ASICON 2001. 2001 4th International Conference on ASIC Proceedings (Cat. No.01TH8549).

[22]  R.W. Brodersen,et al.  Implementation issues in spectrum sensing for cognitive radios , 2004, Conference Record of the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers, 2004..

[23]  A. Prasad Vinod,et al.  A New Common Subexpression Elimination Algorithm for Realizing Low-Complexity Higher Order Digital Filters , 2008, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[24]  Joseph Mitola,et al.  Cognitive Radio An Integrated Agent Architecture for Software Defined Radio , 2000 .

[25]  Tim Hentschel,et al.  Continuous-Time Digital Filters for Sample-Rate Conversion in Reconfigurable Radio Terminals , 2001 .

[26]  John Dunlop,et al.  Dynamic reconfiguration of FPGAs , 1994 .

[27]  A. Ghasemi,et al.  Collaborative spectrum sensing for opportunistic access in fading environments , 2005, First IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, 2005. DySPAN 2005..

[28]  Friedrich Jondral,et al.  Software-Defined Radio—Basics and Evolution to Cognitive Radio , 2005, EURASIP J. Wirel. Commun. Netw..

[29]  A. Dempster,et al.  Use of minimum-adder multiplier blocks in FIR digital filters , 1995 .

[30]  Jürgen Becker,et al.  Dynamic and Partial FPGA Exploitation , 2007, Proceedings of the IEEE.

[31]  Keshab K. Parhi,et al.  Order-configurable programmable power-efficient FIR filters , 1996, Proceedings of 3rd International Conference on High Performance Computing (HiPC).

[32]  Jeffrey H. Reed Software Radio , 2002 .

[33]  Min Hao,et al.  A high-speed, programmable, CSD coefficient FIR filter , 2001, ASICON 2001. 2001 4th International Conference on ASIC Proceedings (Cat. No.01TH8549).

[34]  A. Tkacenko Variable Sample Rate Conversion Techniques for the Advanced Receiver , 2007 .

[35]  Kaushik Roy,et al.  Synthesis of application-specific highly efficient multi-mode cores for embedded systems , 2005, TECS.

[36]  P. Vaidyanathan Multirate Systems And Filter Banks , 1992 .

[37]  Christophe Moy,et al.  New OPBHWICAP Interface for Realtime Partial Reconfiguration of FPGA , 2009, 2009 International Conference on Reconfigurable Computing and FPGAs.

[38]  C. Sidney Burrus,et al.  Multirate filter designs using comb filters , 1984 .

[39]  Chip-Hong Chang,et al.  Information Theoretic Approach to Complexity Reduction of FIR Filter Design , 2008, IEEE Transactions on Circuits and Systems I: Regular Papers.

[40]  Zhi Ding,et al.  Opportunistic spectrum access in cognitive radio networks , 2008, IJCNN.

[41]  Tzi-Dar Chiueh,et al.  A Low-Power Digit-Based Reconfigurable FIR Filter , 2006, IEEE Transactions on Circuits and Systems II: Express Briefs.

[42]  Jouko Vankka Digital Synthesizers and Transmitters for Software Radio , 2005 .

[43]  John Lach,et al.  Highly Flexible Multimode Digital Signal Processing Systems Using Adaptable Components and Controllers , 2006, EURASIP J. Adv. Signal Process..

[44]  S. K. Nandy,et al.  Reconfigurable Filter Coprocessor Architecture for DSP Applications , 2000, J. VLSI Signal Process..

[45]  Reiner W. Hartenstein,et al.  Basics of Reconfigurable Computing , 2007 .

[46]  Joseph Mitola,et al.  Cognitive radio: making software radios more personal , 1999, IEEE Wirel. Commun..

[47]  Emmanuel Casseau,et al.  Synthesis of Multimode digital signal processing systems , 2007, Second NASA/ESA Conference on Adaptive Hardware and Systems (AHS 2007).

[48]  Mahmut T. Kandemir,et al.  Leakage Current: Moore's Law Meets Static Power , 2003, Computer.

[49]  Bertrand Le Gal,et al.  HLS design flow for the synthesis of multimode systems under multiple constraints , 2007, 2007 14th IEEE International Conference on Electronics, Circuits and Systems.

[50]  Russell Meyers A PROSPECTUS OF THE ROLE OF THE COMMITTEE ON CLINICAL METHODS IN COMMUNICATION DISORDERS , 1951 .

[51]  A. Prasad Vinod,et al.  A reconfigurable low complexity architecture for channel adaptation in cognitive radio , 2008, 2008 IEEE 19th International Symposium on Personal, Indoor and Mobile Radio Communications.

[52]  E. Hogenauer,et al.  An economical class of digital filters for decimation and interpolation , 1981 .

[53]  Gerhard Fettweis,et al.  Sample rate conversion for software radio , 2000 .

[54]  H. Samueli,et al.  An improved search algorithm for the design of multiplierless FIR filters with powers-of-two coefficients , 1989 .

[55]  Alan N. Willson,et al.  Application of filter sharpening to cascaded integrator-comb decimation filters , 1997, IEEE Trans. Signal Process..

[56]  Kang G. Shin,et al.  What and how much to gain by spectrum agility? , 2007, IEEE Journal on Selected Areas in Communications.