Nonlinear waves externally excited in a complex plasma under microgravity conditions

An experimental study of intense induced oscillations and nonlinear waves in a complex plasma is presented. The neon plasma is created in the PK-3 Plus set-up on board the International Space Station (ISS) by using a capacitively coupled radio frequency (RF) discharge at a low gas pressure of 16 Pa. The excitation conditions are controlled by a function generator creating a periodic variable modulation at the RF electrodes. In the experiments, comparatively large melamine–formaldehyde particles of 9.2 μm diameter are used to reduce the damping rate coefficient. The elliptic-shaped particle cloud (with a small central void) of size 65 × 14 mm2 was stretched horizontally (parallel to the electrodes) and compressed vertically. Without excitation a weak 5 Hz global breathing mode and weak horizontal waves (approximately with the same frequency) are observed. Increasing the modulation frequency widens the spectrum. The modulation first excites a global vertical slashing mode (at the modulation frequency). At a frequency of 3 Hz intense shaking induces periodic nonlinear wave-ridges in the bottom and top parts of the cloud. The ridges travel at an approximately constant speed of 4–5 mm s−1. The modulation also intensifies horizontal waves localized at the horizontal cloud edges, though the regions of intensive waves are visibly disconnected. At higher frequencies the intense wave activity involves all the cloud, and 'oblique' (quasi-sound) wave-ridges start to propagate through the cloud. Distributions of wave velocity and force fields are analysed.

[1]  G. Morfill,et al.  Complex plasma laboratory PK-3 Plus on the International Space Station , 2008 .

[2]  N. N. Rao Linear and nonlinear dust-acoustic waves in non-ideal dusty plasmas , 1998, Journal of Plasma Physics.

[3]  R. Merlino,et al.  Current-driven dust-acoustic instability in a collisional plasma , 1996 .

[4]  J. Goree,et al.  Condensed Plasmas under Microgravity , 1999 .

[5]  M. Rosenberg Ion- and dust-acoustic instabilities in dusty plasmas , 1993 .

[6]  G. Morfill,et al.  The 'classical tunnelling effect'—observations and theory , 2006 .

[7]  G. Morfill,et al.  Dust density waves in a complex plasma layer , 2007 .

[8]  J. Goree,et al.  PKE-Nefedov*: plasma crystal experiments on the International Space Station , 2003 .

[9]  J. Allen,et al.  The floating potential of spherical probes and dust grains. Part 1. Radial motion theory , 2002, Journal of Plasma Physics.

[10]  S. Annibaldi,et al.  Dust-acoustic dispersion relation in three-dimensional complex plasmas under microgravity , 2007 .

[11]  L. Couëdel,et al.  Self-excited void instability in dusty plasmas: plasma and dust cloud dynamics during the heartbeat instability , 2007 .

[12]  V. Molotkov,et al.  Dust acoustic waves in a dc glow-discharge plasma , 1999 .

[13]  G. Morfill,et al.  Compressional waves in complex (dusty) plasmas under microgravity conditions , 2003 .

[14]  Gravity compensation in complex plasmas by application of a temperature gradient. , 2001, Physical review letters.

[15]  V. Molotkov,et al.  Crystallization of a dusty plasma in the positive column of a glow discharge , 1996 .

[16]  James F. Allen,et al.  The Collection of Positive Ions by a Probe Immersed in a Plasma , 1957 .

[17]  G. Morfill,et al.  Highly resolved self-excited density waves in a complex plasma. , 2007, Physical review letters.

[18]  P. Shukla,et al.  Dust acoustic shock waves. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  G. Morfill,et al.  Circulation' dynamo in complex plasma , 2007 .

[20]  Gregor E. Morfill,et al.  Complex (dusty) plasmas: current status, open issues, perspectives , 2005 .

[21]  J. Goree,et al.  Theory of dust voids in plasmas. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[22]  R. Merlino,et al.  Laboratory studies of waves and instabilities in dusty plasmas , 1998 .

[23]  Bin Liu,et al.  Accurate particle position measurement from images. , 2007, The Review of scientific instruments.

[24]  R. Merlino,et al.  Dust acoustic waves in a direct current glow discharge , 1997 .

[25]  M. Rosenberg Ion‐dust streaming instability in processing plasmas , 1996 .

[26]  E. Thomas,et al.  Observations of dust acoustic waves driven at high frequencies , 2007 .

[27]  P. S. Epstein,et al.  On the Resistance Experienced by Spheres in their Motion through Gases , 1924 .

[28]  A. Piel,et al.  Obliquely propagating dust-density plasma waves in the presence of an ion beam. , 2006, Physical review letters.

[29]  J. Swift,et al.  New books - Electrical probes for plasma diagnostics , 1970 .

[30]  G. Morfill,et al.  Void Closure in Complex Plasmas under Microgravity Conditions. , 2007, Physical review letters.

[31]  G. Morfill,et al.  Melting dynamics of a plasma crystal , 1996, Nature.

[32]  R. Merlino,et al.  Laboratory observation of the dust-acoustic wave mode , 1995 .

[33]  T. Matsoukas,et al.  Particle charging in low‐pressure plasmas , 1995 .

[34]  B. Liu,et al.  Radiation pressure and gas drag forces on a melamine-formaldehyde microsphere in a dusty plasma , 2003 .

[35]  N. N. Rao,et al.  DUST -ACOUSTIC WAVES IN DUSTY PLASMAS , 1990 .

[36]  W. Cawood The movement of dust or smoke particles in a temperature gradient , 1936 .