Developing Terpyridine-Based Metal Complexes for Non-Aqueous Redox Flow Batteries

[1]  S. Minteer,et al.  Suppressing Crossover in Nonaqueous Redox Flow Batteries with Polyethylene-Based Anion-Exchange Membranes , 2022, ACS Energy Letters.

[2]  T. L. Liu,et al.  Materials challenges of aqueous redox flow batteries , 2022, MRS Energy & Sustainability.

[3]  Yongchai Kwon,et al.  Aqueous redox flow battery using iron 2,2‐bis(hydroxymethyl)‐2,2′,2′‐nitrilotriethanol complex and ferrocyanide as newly developed redox couple , 2022, International Journal of Energy Research.

[4]  Kara E. Rodby,et al.  Untapped Potential: The Need and Opportunity for High-Voltage Aqueous Redox Flow Batteries , 2022, ACS Energy Letters.

[5]  Bing Yuan,et al.  Mechanistic Insights of Cycling Stability of Ferrocene Catholytes in Aqueous Redox Flow Batteries , 2022, Energy & Environmental Science.

[6]  T. Zhao,et al.  Artificial Bipolar Redox-Active Molecule for Symmetric Nonaqueous Redox Flow Batteries , 2021, ACS Sustainable Chemistry & Engineering.

[7]  Guokun Liu,et al.  POM Anolyte for All‐Anion Redox Flow Batteries with High Capacity Retention and Coulombic Efficiency at Mild pH , 2021, Advanced materials.

[8]  Nicolas E. Holubowitch,et al.  Isopropyl alcohol and copper hexacyanoferrate boost performance of the iron tris‐bipyridine catholyte for near‐neutral pH aqueous redox flow batteries , 2021, International Journal of Energy Research.

[9]  Xianfeng Li,et al.  Organic Electrolytes for pH‐Neutral Aqueous Organic Redox Flow Batteries , 2021, Advanced Functional Materials.

[10]  Xianfeng Li,et al.  Opportunities and challenges of organic flow battery for electrochemical energy storage technology , 2021, Journal of Energy Chemistry.

[11]  Wei Wang,et al.  Symmetry-breaking design of an organic iron complex catholyte for a long cyclability aqueous organic redox flow battery , 2021, Nature Energy.

[12]  T. J. Tarring,et al.  Fine-Tuning Metal and Ligand-Centered Redox Potentials of Homoleptic Bis-Terpyridine Complexes with 4'-Aryl Substituents. , 2021, Inorganic chemistry.

[13]  Ping Yang,et al.  Iron-iminopyridine complexes as charge carriers for non-aqueous redox flow battery applications , 2021, Energy Storage Materials.

[14]  T. Zhao,et al.  Carboxyl-Functionalized TEMPO Catholyte Enabling High-Cycling-Stability and High-Energy-Density Aqueous Organic Redox Flow Batteries , 2021 .

[15]  Jamie M Cameron,et al.  Molecular redox species for next-generation batteries. , 2021, Chemical Society reviews.

[16]  S. Minteer,et al.  Bipolar Redox‐Active Molecules in Non‐Aqueous Organic Redox Flow Batteries: Status and Challenges , 2021 .

[17]  Yongchai Kwon,et al.  Highly stable aqueous organometallic redox flow batteries using cobalt triisopropanolamine and iron triisopropanolamine complexes , 2021 .

[18]  T. Zhao,et al.  Cost-Effective, High-Energy-Density, Nonaqueous Nitrobenzene Organic Redox Flow Battery , 2021 .

[19]  Yongdan Li,et al.  Ferrocene/anthraquinone based bi-redox molecule for symmetric nonaqueous redox flow battery , 2020 .

[20]  Claudina X Cammack,et al.  A higher voltage Fe(II) bipyridine complex for non-aqueous redox flow batteries. , 2020, Dalton transactions.

[21]  B. Liu,et al.  An aqueous organic redox flow battery employing a trifunctional electroactive compound as anolyte, catholyte and supporting electrolyte , 2020 .

[22]  Zhengjin Yang,et al.  Designer Ferrocene Catholyte for Aqueous Organic Flow Batteries. , 2020, ChemSusChem.

[23]  Yongzhu Fu,et al.  Recent advances of organometallic complexes for rechargeable batteries , 2020 .

[24]  Yi‐Chun Lu,et al.  Material Design of Aqueous Redox Flow Batteries: Fundamental Challenges and Mitigation Strategies , 2020, Advanced materials.

[25]  S. Minteer,et al.  Recent advancements in rational design of non-aqueous organic redox flow batteries , 2020, Sustainable Energy & Fuels.

[26]  Ruiyong Chen Redox flow batteries for energy storage: Recent advances in using organic active materials , 2020 .

[27]  T. Zhao,et al.  A high power density and long cycle life vanadium redox flow battery , 2020 .

[28]  Yongdan Li,et al.  Enhancing the performance of an all-organic non-aqueous redox flow battery , 2019 .

[29]  Kathryn E. Toghill,et al.  Metal coordination complexes in nonaqueous redox flow batteries , 2019 .

[30]  Kathryn E. Toghill,et al.  Dithiolene Complexes of First‐Row Transition Metals for Symmetric Nonaqueous Redox Flow Batteries , 2019, ChemSusChem.

[31]  T. L. Liu,et al.  Status and Prospects of Organic Redox Flow Batteries toward Sustainable Energy Storage , 2019, ACS Energy Letters.

[32]  Yi‐Chun Lu,et al.  Recent progress in organic redox flow batteries: Active materials, electrolytes and membranes , 2018, Journal of Energy Chemistry.

[33]  Seung M. Oh,et al.  N-ferrocenylphthalimide; A single redox couple formed by attaching a ferrocene moiety to phthalimide for non-aqueous flow batteries , 2018, Journal of Power Sources.

[34]  Chunzhen Yang,et al.  Designing Redox‐Stable Cobalt–Polypyridyl Complexes for Redox Flow Batteries: Spin‐Crossover Delocalizes Excess Charge , 2018 .

[35]  Tianshou Zhao,et al.  Improved electrolyte for zinc-bromine flow batteries , 2018 .

[36]  Dong Kyu Kim,et al.  Redox Flow Batteries for Energy Storage: A Technology Review , 2018 .

[37]  Young Gyu Kim,et al.  Highly Soluble Tris(2,2 '-bipyridine) Metal Bis(trifluoromethanesulfonyl)imide Complexes for High Energy Organic Redox Flow Batteries , 2018 .

[38]  Yu Ding,et al.  Molecular engineering of organic electroactive materials for redox flow batteries. , 2018, Chemical Society reviews.

[39]  C. Bignozzi,et al.  Electrochemical characterization of polypyridine iron(II) and cobalt(II) complexes for organic redox flow batteries , 2017 .

[40]  David M. Reed,et al.  Materials and Systems for Organic Redox Flow Batteries: Status and Challenges , 2017 .

[41]  Lei Cheng,et al.  Predicting the potentials, solubilities and stabilities of metal-acetylacetonates for non-aqueous redox flow batteries using density functional theory calculations , 2017 .

[42]  Kathryn E. Toghill,et al.  Cobalt(II) complexes with azole-pyridine type ligands for non-aqueous redox-flow batteries: Tunable electrochemistry via structural modification , 2017 .

[43]  Yutao Li,et al.  A high-performance all-metallocene-based, non-aqueous redox flow battery , 2017 .

[44]  R. Gordon,et al.  A Neutral pH Aqueous Organic–Organometallic Redox Flow Battery with Extremely High Capacity Retention , 2017 .

[45]  V. Sprenkle,et al.  New Mechanism for the Reduction of Vanadyl Acetylacetonate to Vanadium Acetylacetonate for Room Temperature Flow Batteries. , 2017, ChemSusChem.

[46]  Ulrich S. Schubert,et al.  Redox‐Flow Batteries: From Metals to Organic Redox‐Active Materials , 2016, Angewandte Chemie.

[47]  Wei Wang,et al.  Material design and engineering of next-generation flow-battery technologies , 2017 .

[48]  Jeffrey S. Moore,et al.  Redox active polymers for non-aqueous redox flow batteries: Validation of the size-exclusion approach , 2017 .

[49]  C. Sevov,et al.  Mechanism-Based Development of a Low-Potential, Soluble, and Cyclable Multielectron Anolyte for Nonaqueous Redox Flow Batteries. , 2016, Journal of the American Chemical Society.

[50]  David M. Reed,et al.  A High-Current, Stable Nonaqueous Organic Redox Flow Battery , 2016 .

[51]  Xuelong Zhou,et al.  A high-performance flow-field structured iron-chromium redox flow battery , 2016 .

[52]  G. Viscardi,et al.  Terpyridine and Quaterpyridine Complexes as Sensitizers for Photovoltaic Applications , 2016, Materials.

[53]  L. Thompson,et al.  Evaluation of Tris-Bipyridine Chromium Complexes for Flow Battery Applications: Impact of Bipyridine Ligand Structure on Solubility and Electrochemistry. , 2015, Inorganic chemistry.

[54]  Monte L. Helm,et al.  Anion-Tunable Properties and Electrochemical Performance of Functionalized Ferrocene Compounds , 2015, Scientific Reports.

[55]  Jens Noack,et al.  The Chemistry of Redox-Flow Batteries. , 2015, Angewandte Chemie.

[56]  L. Thompson,et al.  Complexes Containing Redox Noninnocent Ligands for Symmetric, Multielectron Transfer Nonaqueous Redox Flow Batteries , 2015 .

[57]  Seung M. Oh,et al.  A tetradentate Ni(II) complex cation as a single redox couple for non-aqueous flow batteries , 2015 .

[58]  R. Savinell,et al.  Metal acetylacetonate complexes for high energy density non-aqueous redox flow batteries , 2015 .

[59]  M. Fontecave,et al.  Turning it off! Disfavouring hydrogen evolution to enhance selectivity for CO production during homogeneous CO2 reduction by cobalt–terpyridine complexes , 2015, Chemical science.

[60]  Ketack Kim,et al.  Ferrocene and cobaltocene derivatives for non-aqueous redox flow batteries. , 2015, ChemSusChem.

[61]  M. Fontecave,et al.  Terpyridine complexes of first row transition metals and electrochemical reduction of CO₂ to CO. , 2014, Physical chemistry chemical physics : PCCP.

[62]  M. Neuburger,et al.  The surprising lability of bis(2,2':6',2''-terpyridine)chromium(III) complexes. , 2014, Dalton transactions.

[63]  Nicholas S. Hudak,et al.  Application of Redox Non‐Innocent Ligands to Non‐Aqueous Flow Battery Electrolytes , 2014 .

[64]  Xianfeng Li,et al.  A novel single flow zinc–bromine battery with improved energy density , 2013 .

[65]  K. Wieghardt,et al.  Experimental fingerprints for redox-active terpyridine in [Cr(tpy)2](PF6)n (n = 3-0), and the remarkable electronic structure of [Cr(tpy)2]1-. , 2012, Inorganic chemistry.

[66]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[67]  V. Pecoraro,et al.  Tuning the redox properties of manganese(II) and its implications to the electrochemistry of manganese and iron superoxide dismutases. , 2008, Inorganic chemistry.

[68]  M. Morita,et al.  A rechargeable redox battery utilizing ruthenium complexes with non-aqueous organic electrolyte , 1988 .