Long-Time Asymptotics of a Multiscale Model for Polymeric Fluid Flows

In this paper, we investigate the long-time behavior of some micro-macro models for polymeric fluids (Hookean model and FENE model), in various settings (shear flow, general bounded domain with homogeneous Dirichlet boundary conditions on the velocity, general bounded domain with non-homogeneous Dirichlet boundary conditions on the velocity). We use both probabilistic approaches (coupling methods) and analytic approaches (entropy methods).

[1]  Benjamin Jourdain,et al.  NUMERICAL ANALYSIS OF MICRO–MACRO SIMULATIONS OF POLYMERIC FLUID FLOWS: A SIMPLE CASE , 2002 .

[2]  T. Lindvall Lectures on the Coupling Method , 1992 .

[3]  R. Bird Dynamics of Polymeric Liquids , 1977 .

[4]  Pierre Degond,et al.  Viscoelastic Fluid Models Derived from Kinetic Equations for Polymers , 2002, SIAM J. Appl. Math..

[5]  Giuseppe Toscani,et al.  ON CONVEX SOBOLEV INEQUALITIES AND THE RATE OF CONVERGENCE TO EQUILIBRIUM FOR FOKKER-PLANCK TYPE EQUATIONS , 2001 .

[6]  Benjamin Jourdain,et al.  Existence of solution for a micro–macro model of polymeric fluid: the FENE model , 2004 .

[7]  J. Doob Stochastic processes , 1953 .

[8]  Edriss S. Titi,et al.  Asymptotic States of a Smoluchowski Equation , 2004 .

[9]  L. Evans A survey of entropy methods for partial differential equations , 2004 .

[10]  An elementary argument regarding the long-time behaviour of the solution to a stochastic differential equation , 2005 .

[11]  C. Odasso Ergodicity for the stochastic Complex Ginzburg-Landau equations , 2004, math/0405519.

[12]  Edriss S. Titi,et al.  Remarks on a Smoluchowski equation , 2004 .

[13]  C. Villani,et al.  On the trend to global equilibrium in spatially inhomogeneous entropy‐dissipating systems: The linear Fokker‐Planck equation , 2001 .

[14]  Jonathan C. Mattingly,et al.  Ergodicity for SDEs and approximations: locally Lipschitz vector fields and degenerate noise , 2002 .

[15]  The structure of equilibrium solutions of the one-dimensional Doi equation , 2005 .

[16]  Qiang Du,et al.  FENE Dumbbell Model and Its Several Linear and Nonlinear Closure Approximations , 2005, Multiscale Model. Simul..

[17]  H. Triebel Interpolation Theory, Function Spaces, Differential Operators , 1978 .

[18]  Benjamin Jourdain,et al.  MATHEMATICAL ANALYSIS OF A STOCHASTIC DIFFERENTIAL EQUATION ARISING IN THE MICRO-MACRO MODELLING OF POLYMERIC FLUIDS , 2003 .

[19]  Djalil CHAFAÏ,et al.  Sur les in'egalit'es de Sobolev logarithmiques , 2000 .

[20]  E. Süli,et al.  Existence of global weak solutions for some polymeric flow models , 2005 .

[21]  D. Gilbarg,et al.  Elliptic Partial Differential Equa-tions of Second Order , 1977 .

[22]  Roger Temam,et al.  Qualitative Properties of Navier-Stokes Equations , 1978 .

[23]  Hans Christian Öttinger,et al.  Stochastic Processes in Polymeric Fluids , 1996 .

[24]  Pingwen Zhang,et al.  Local Existence for the FENE-Dumbbell Model of Polymeric Fluids , 2004 .

[25]  R. Temam Navier-Stokes Equations , 1977 .

[26]  Anton Arnold,et al.  Entropy decay of discretized fokker-planck equations I—Temporal semidiscretization , 2003 .

[27]  Pingwen Zhang,et al.  Well-Posedness for the Dumbbell Model of Polymeric Fluids , 2004 .

[28]  S. Edwards,et al.  The Theory of Polymer Dynamics , 1986 .

[29]  Benjamin Jourdain,et al.  On a variance reduction technique for micro–macro simulations of polymeric fluids , 2004 .

[30]  Michael Renardy,et al.  An existence theorem for model equations resulting from kinetic theories of polymer solutions , 1991 .

[31]  J. Snyders,et al.  On Nonnegative Solutions of the Equation $AD + DA' = - C$ , 1970 .

[32]  C. Villani,et al.  ON THE TREND TO EQUILIBRIUM FOR THE FOKKER-PLANCK EQUATION : AN INTERPLAY BETWEEN PHYSICS AND FUNCTIONAL ANALYSIS , 2004 .