Structural origins of coloration in the spider Phoroncidia rubroargentea Berland, 1913 (Araneae: Theridiidae) from Madagascar
暂无分享,去创建一个
Jaakko V. I. Timonen | J. Weaver | Mathias Kolle | Dvir Gur | L. Leiserowitz | Carolyn Marks | Ling Li | Ling Li | D. Gur | Sarah J. Kariko | J. Timonen | Ling Li | C. Marks | J. Timonen | Sarah Kariko | James C. Weaver | Dvir Gur | Carolyn Marks | L. Leiserowitz | Mathias Kolle
[1] S. Weiner,et al. Biologically Controlled Morphology and Twinning in Guanine Crystals. , 2017, Angewandte Chemie.
[2] S. Masta,et al. Females are the brighter sex: Differences in external fluorescence across sexes and life stages of a crab spider , 2017, PloS one.
[3] Darío A. Estrin,et al. Naturally occurring fluorescence in frogs , 2017, Proceedings of the National Academy of Sciences.
[4] S. Weiner,et al. Light Manipulation by Guanine Crystals in Organisms: Biogenic Scatterers, Mirrors, Multilayer Reflectors and Photonic Crystals , 2017 .
[5] Bor-Kai Hsiung,et al. Tarantula‐Inspired Noniridescent Photonics with Long‐Range Order , 2017 .
[6] D. Stavenga,et al. Splendid coloration of the peacock spider Maratus splendens , 2016, Journal of The Royal Society Interface.
[7] N. Michiels,et al. The consistent difference in red fluorescence in fishes across a 15 m depth gradient is triggered by ambient brightness, not by ambient spectrum , 2016, BMC Research Notes.
[8] S. Pekár,et al. A revised and dated phylogeny of cobweb spiders (Araneae, Araneoidea, Theridiidae): A predatory Cretaceous lineage diversifying in the era of the ants (Hymenoptera, Formicidae). , 2016, Molecular phylogenetics and evolution.
[9] Bor-Kai Hsiung,et al. Spiders do have melanin after all , 2015, Journal of Experimental Biology.
[10] Bor-Kai Hsiung,et al. Blue reflectance in tarantulas is evolutionarily conserved despite nanostructural diversity , 2015, Science Advances.
[11] J. Aizenberg,et al. A highly conspicuous mineralized composite photonic architecture in the translucent shell of the blue-rayed limpet , 2015, Nature Communications.
[12] Sarah J. Kariko. The Glitterati: Four New Species of Phoroncidia (Araneae: Theridiidae) from Madagascar, with the First Description of the Male of P. aurata O. Pickard—Cambridge, 1877 , 2014 .
[13] Bor-Kai Hsiung,et al. Structural color and its interaction with other color-producing elements: perspectives from spiders , 2014, Optics & Photonics - Optical Engineering + Applications.
[14] Hanne M. van der Kooij,et al. Controlled, Bio-inspired Self-Assembly of Cellulose-Based Chiral Reflectors , 2014, Advanced optical materials.
[15] D. Wells,et al. From jellyfish to biosensors: the use of fluorescent proteins in plants. , 2013, The International journal of developmental biology.
[16] C. Kropf,et al. Rapid Colour Change in Spiders , 2013 .
[17] R. Gillespie,et al. De novo characterization of the gene-rich transcriptomes of two color-polymorphic spiders, Theridion grallator and T. californicum (Araneae: Theridiidae), with special reference to pigment genes , 2013, BMC Genomics.
[18] E. Brandt. Externally-Expressed Fluorescence across Sexes, Life Stages, and Species of Spiders , 2012 .
[19] R. Prum,et al. How colorful are birds? Evolution of the avian plumage color gamut , 2011 .
[20] W. Wiesenborn. UV-Excited Fluorescence on Riparian Insects except Hymenoptera Is Associated with Nitrogen Content , 2011 .
[21] A. Parker,et al. Structural origin of the green iridescence on the chelicerae of the red-backed jumping spider, Phidippus johnsoni (Salticidae: Araneae). , 2011, Arthropod structure & development.
[22] R. Reynolds,et al. Ultraviolet light detection: a function of scorpion fluorescence , 2010 .
[23] S. Weiner,et al. Guanine‐Based Biogenic Photonic‐Crystal Arrays in Fish and Spiders , 2010 .
[24] R. Foelix,et al. Palpal urticating hairs in the tarantula Ephebopus: fine structure and mechanism of release , 2009 .
[25] R. Fuchs,et al. What constitutes optical warning signals of ladybirds (Coleoptera: Coccinellidae) towards bird predators: colour, pattern or general look? , 2009 .
[26] B. Marples,et al. A new type of web spun by spiders of the genus Ulesanis with the description of two new species , 2009 .
[27] A. Parker,et al. Characterization of the green iridescence on the chelicerae of the tube web spider, Segestria florentina (Rossi 1790) (Araneae, Segestriidae) , 2009 .
[28] Jean-Pol Vigneron,et al. Gold bugs and beyond: a review of iridescence and structural colour mechanisms in beetles (Coleoptera) , 2009, Journal of The Royal Society Interface.
[29] M. Théry,et al. The multiple disguises of spiders: web colour and decorations, body colour and movement , 2009, Philosophical Transactions of the Royal Society B: Biological Sciences.
[30] Jérôme Casas,et al. The functional morphology of color changing in a spider: development of ommochrome pigment granules , 2008, Journal of Experimental Biology.
[31] K. McGraw,et al. Animal Coloration: Sexy Spider Scales , 2007, Current Biology.
[32] S. Reed,et al. Spiders fluoresce variably across many taxa , 2007, Biology Letters.
[33] Michael F Land,et al. Sex-Specific UV and Fluorescence Signals in Jumping Spiders , 2007, Science.
[34] W. Clegg,et al. Anhydrous guanine: a synchrotron study. , 2006, Acta crystallographica. Section C, Crystal structure communications.
[35] R. Prum. Anatomy, Physics, and Evolution of Structural Colors , 2006, Bird Coloration, Volume 1.
[36] Nicola M. Marples,et al. PERSPECTIVE: THE EVOLUTION OF WARNING COLORATION IS NOT PARADOXICAL , 2005, Evolution; international journal of organic evolution.
[37] C. Bitsch,et al. Evolution of eye structure and arthropod phylogeny , 2005 .
[38] Guanine as a colorant in spiders : development , genetics , phylogenetics and ecology , 2005 .
[39] Jérôme Casas,et al. Specific Color Sensitivities of Prey and Predator Explain Camouflage in Different Visual Systems , 2004 .
[40] I. Agnarsson. Morphological phylogeny of cobweb spiders and their relatives (Araneae, Araneoidea, Theridiidae) , 2004 .
[41] Michael C. Thomas,et al. INVERTEBRATE ANIMALS EXTRACTED FROM NATIVE TILLANDSIA (BROMELIALES: BROMELIACEAE) IN SARASOTA COUNTY, FLORIDA , 2004 .
[42] James M. Pflug,et al. From a comb to a tree: phylogenetic relationships of the comb-footed spiders (Araneae, Theridiidae) inferred from nuclear and mitochondrial genes. , 2004, Molecular phylogenetics and evolution.
[43] T. Cronin,et al. Fluorescent Enhancement of Signaling in a Mantis Shrimp , 2004, Science.
[44] W. Rüdiger,et al. Micromatabilin, a new biliverdin conjugate in the spider,Micromata rosea (Sparassidae) , 1975, Journal of comparative physiology.
[45] F. Barth. Microfiber reinforcement of an arthropod cuticle , 1973, Zeitschrift für Zellforschung und Mikroskopische Anatomie.
[46] Andrew R. Parker,et al. Diffractive optics in spiders , 2003 .
[47] F. Sultan. Brain evolution (Communication arising): Analysis of mammalian brain architecture , 2002, Nature.
[48] Jérôme Casas,et al. Visual systems: Predator and prey views of spider camouflage , 2002, Nature.
[49] I. Owens,et al. Fluorescent signaling in parrots. , 2002, Science.
[50] R. Gillespie,et al. Portraits of Evolution: Studies of Coloration in Hawaiian Spiders , 2001 .
[51] W. Nentwig,et al. ONTOGENETIC CHANGE IN COLORATION AND WEB-BUILDING BEHAVIOR IN THE TROPICAL SPIDER ERIOPHORA FULIGINEA (ARANEAE, ARANEIDAE) , 2001 .
[52] J. R. Sambles,et al. Structural colour: Colour mixing in wing scales of a butterfly , 2000, Nature.
[53] Mohan Srinivasarao,et al. Nano‐Optics in the Biological World: Beetles, Butterflies, Birds, and Moths , 1999 .
[54] D. V. Van Vranken,et al. The fluorescence of scorpions and cataractogenesis. , 1999, Chemistry & biology.
[55] R. Wootton,et al. Quantified interference and diffraction in single Morpho butterfly scales , 1999, Proceedings of the Royal Society of London. Series B: Biological Sciences.
[56] R. Gillespie,et al. Evolution and ecology of spider coloration. , 1998, Annual review of entomology.
[57] H. Kleinig,et al. Light-dependent regulation of carotenoid biosynthesis occurs at the level of phytoene synthase expression and is mediated by phytochrome in Sinapis alba and Arabidopsis thaliana seedlings. , 1997, The Plant journal : for cell and molecular biology.
[58] R. Edwards,et al. BEHAVIOR AND NICHE SELECTION BY MAILBOX SPIDERS , 1997 .
[59] M. L. Draney. GROUND-LAYER SPIDERS (ARANEAE) OF A GEORGIA PIEDMONT FLOODPLAIN AGROECOSYSTEM : SPECIES LIST, PHENOLOGY AND HABITAT SELECTIO N , 1997 .
[60] R. Harrington,et al. Nutritional ecology of insects, mites, spiders, and related invertebrates , 1988 .
[61] J. Dalingwater. Chelicerate Cuticle Structure , 1987 .
[62] A. Holl. Coloration and Chromes , 1987 .
[63] W. Nentwig. Ecophysiology of Spiders , 1987, Springer Berlin Heidelberg.
[64] N. Fusenig. Mammalian Epidermal Cells in Culture , 1986 .
[65] R. Foelix,et al. The biology of spiders. , 1987 .
[66] D. Threlfall. The biochemistry of the carotenoids, volume I, plants : T.W. Goodwin, Chapman & Hall, London, 1980. 377 pp. £27.50. , 1981 .
[67] W. Eberhard,et al. THE SINGLE LINE WEB OF PHORONCIDIA STUDO LEVI (ARANEAE: THERIDIIDAE): A PREY ATTRACTANT? , 1981 .
[68] D A Parry,et al. The chitin crystallite in arthropod cuticle. , 1976, Journal of cell science.
[69] V. Seligy. Ommochrome pigments of spiders , 1972 .
[70] R. E. Marsh,et al. The crystal structure of guanine monohydrate , 1971 .
[71] V. Seligy. Biochemical aspects of pigment variation in the spider Enoplognatha ovata (Clerck) (Araneae:Theridiidae) , 1969 .
[72] K. M. Rudall. The Chitin/Protein Complexes of Insect Cuticles , 1963 .
[73] H. Nemenz. Über den Bau der Kutikula und dessen Einfluß auf die Wasserabgabe bei Spinnen , 1955 .
[74] R. F. Lawrence. Fluorescence in Arthropoda , 1954 .
[75] I. Newton,et al. Discovery of the Dispersion of Light and of the Nature of Color (1672) , 1930, Isis.
[76] O. Riddle. OUR KNOWLEDGE OF MELANIN COLOR FORMATION AND ITS BEARING ON THE MENDELIAN DESCRIPTION OF HEREDITY , 1909 .
[77] J. Emerton. New England spiders of the family Theridiidae , 1882 .