Structural origins of coloration in the spider Phoroncidia rubroargentea Berland, 1913 (Araneae: Theridiidae) from Madagascar

This study investigates the structural basis for the red, silver and black coloration of the theridiid spider, Phoroncidia rubroargentea (Berland, 1913) from Madagascar. Specimens of this species can retain their colour after storage in ethanol for decades, whereas most other brightly pigmented spider specimens fade under identical preservation conditions. Using correlative optical, structural and chemical analysis, we identify the colour-generating structural elements and characterize their optical properties. The prominent silvery appearance of the spider's abdomen results from regularly arranged guanine microplatelets, similar to those found in other spiders and fish. The microplatelets are composed of a doublet structure twinned about the [] axis, as suggested by electron diffraction. The red coloration originates from chambered microspheres (approx. 1 µm in diameter), which contain structured fluorescent material. Co-localization of the red microparticles on top of the reflective guanine microplatelets appears to enhance the red coloration. The spider's thick cuticular layer, which encases its abdomen, varies in its optical properties, being transparent in regions where only guanine reflectors are present, and tanned, exhibiting light absorption where the red microspheres are found. Moreover, colour degradation in some preserved spider specimens that had suffered damage to the cuticular layer suggests that this region of the exoskeleton may play an important role in the stabilization of the red coloration.

[1]  S. Weiner,et al.  Biologically Controlled Morphology and Twinning in Guanine Crystals. , 2017, Angewandte Chemie.

[2]  S. Masta,et al.  Females are the brighter sex: Differences in external fluorescence across sexes and life stages of a crab spider , 2017, PloS one.

[3]  Darío A. Estrin,et al.  Naturally occurring fluorescence in frogs , 2017, Proceedings of the National Academy of Sciences.

[4]  S. Weiner,et al.  Light Manipulation by Guanine Crystals in Organisms: Biogenic Scatterers, Mirrors, Multilayer Reflectors and Photonic Crystals , 2017 .

[5]  Bor-Kai Hsiung,et al.  Tarantula‐Inspired Noniridescent Photonics with Long‐Range Order , 2017 .

[6]  D. Stavenga,et al.  Splendid coloration of the peacock spider Maratus splendens , 2016, Journal of The Royal Society Interface.

[7]  N. Michiels,et al.  The consistent difference in red fluorescence in fishes across a 15 m depth gradient is triggered by ambient brightness, not by ambient spectrum , 2016, BMC Research Notes.

[8]  S. Pekár,et al.  A revised and dated phylogeny of cobweb spiders (Araneae, Araneoidea, Theridiidae): A predatory Cretaceous lineage diversifying in the era of the ants (Hymenoptera, Formicidae). , 2016, Molecular phylogenetics and evolution.

[9]  Bor-Kai Hsiung,et al.  Spiders do have melanin after all , 2015, Journal of Experimental Biology.

[10]  Bor-Kai Hsiung,et al.  Blue reflectance in tarantulas is evolutionarily conserved despite nanostructural diversity , 2015, Science Advances.

[11]  J. Aizenberg,et al.  A highly conspicuous mineralized composite photonic architecture in the translucent shell of the blue-rayed limpet , 2015, Nature Communications.

[12]  Sarah J. Kariko The Glitterati: Four New Species of Phoroncidia (Araneae: Theridiidae) from Madagascar, with the First Description of the Male of P. aurata O. Pickard—Cambridge, 1877 , 2014 .

[13]  Bor-Kai Hsiung,et al.  Structural color and its interaction with other color-producing elements: perspectives from spiders , 2014, Optics & Photonics - Optical Engineering + Applications.

[14]  Hanne M. van der Kooij,et al.  Controlled, Bio-inspired Self-Assembly of Cellulose-Based Chiral Reflectors , 2014, Advanced optical materials.

[15]  D. Wells,et al.  From jellyfish to biosensors: the use of fluorescent proteins in plants. , 2013, The International journal of developmental biology.

[16]  C. Kropf,et al.  Rapid Colour Change in Spiders , 2013 .

[17]  R. Gillespie,et al.  De novo characterization of the gene-rich transcriptomes of two color-polymorphic spiders, Theridion grallator and T. californicum (Araneae: Theridiidae), with special reference to pigment genes , 2013, BMC Genomics.

[18]  E. Brandt Externally-Expressed Fluorescence across Sexes, Life Stages, and Species of Spiders , 2012 .

[19]  R. Prum,et al.  How colorful are birds? Evolution of the avian plumage color gamut , 2011 .

[20]  W. Wiesenborn UV-Excited Fluorescence on Riparian Insects except Hymenoptera Is Associated with Nitrogen Content , 2011 .

[21]  A. Parker,et al.  Structural origin of the green iridescence on the chelicerae of the red-backed jumping spider, Phidippus johnsoni (Salticidae: Araneae). , 2011, Arthropod structure & development.

[22]  R. Reynolds,et al.  Ultraviolet light detection: a function of scorpion fluorescence , 2010 .

[23]  S. Weiner,et al.  Guanine‐Based Biogenic Photonic‐Crystal Arrays in Fish and Spiders , 2010 .

[24]  R. Foelix,et al.  Palpal urticating hairs in the tarantula Ephebopus: fine structure and mechanism of release , 2009 .

[25]  R. Fuchs,et al.  What constitutes optical warning signals of ladybirds (Coleoptera: Coccinellidae) towards bird predators: colour, pattern or general look? , 2009 .

[26]  B. Marples,et al.  A new type of web spun by spiders of the genus Ulesanis with the description of two new species , 2009 .

[27]  A. Parker,et al.  Characterization of the green iridescence on the chelicerae of the tube web spider, Segestria florentina (Rossi 1790) (Araneae, Segestriidae) , 2009 .

[28]  Jean-Pol Vigneron,et al.  Gold bugs and beyond: a review of iridescence and structural colour mechanisms in beetles (Coleoptera) , 2009, Journal of The Royal Society Interface.

[29]  M. Théry,et al.  The multiple disguises of spiders: web colour and decorations, body colour and movement , 2009, Philosophical Transactions of the Royal Society B: Biological Sciences.

[30]  Jérôme Casas,et al.  The functional morphology of color changing in a spider: development of ommochrome pigment granules , 2008, Journal of Experimental Biology.

[31]  K. McGraw,et al.  Animal Coloration: Sexy Spider Scales , 2007, Current Biology.

[32]  S. Reed,et al.  Spiders fluoresce variably across many taxa , 2007, Biology Letters.

[33]  Michael F Land,et al.  Sex-Specific UV and Fluorescence Signals in Jumping Spiders , 2007, Science.

[34]  W. Clegg,et al.  Anhydrous guanine: a synchrotron study. , 2006, Acta crystallographica. Section C, Crystal structure communications.

[35]  R. Prum Anatomy, Physics, and Evolution of Structural Colors , 2006, Bird Coloration, Volume 1.

[36]  Nicola M. Marples,et al.  PERSPECTIVE: THE EVOLUTION OF WARNING COLORATION IS NOT PARADOXICAL , 2005, Evolution; international journal of organic evolution.

[37]  C. Bitsch,et al.  Evolution of eye structure and arthropod phylogeny , 2005 .

[38]  Guanine as a colorant in spiders : development , genetics , phylogenetics and ecology , 2005 .

[39]  Jérôme Casas,et al.  Specific Color Sensitivities of Prey and Predator Explain Camouflage in Different Visual Systems , 2004 .

[40]  I. Agnarsson Morphological phylogeny of cobweb spiders and their relatives (Araneae, Araneoidea, Theridiidae) , 2004 .

[41]  Michael C. Thomas,et al.  INVERTEBRATE ANIMALS EXTRACTED FROM NATIVE TILLANDSIA (BROMELIALES: BROMELIACEAE) IN SARASOTA COUNTY, FLORIDA , 2004 .

[42]  James M. Pflug,et al.  From a comb to a tree: phylogenetic relationships of the comb-footed spiders (Araneae, Theridiidae) inferred from nuclear and mitochondrial genes. , 2004, Molecular phylogenetics and evolution.

[43]  T. Cronin,et al.  Fluorescent Enhancement of Signaling in a Mantis Shrimp , 2004, Science.

[44]  W. Rüdiger,et al.  Micromatabilin, a new biliverdin conjugate in the spider,Micromata rosea (Sparassidae) , 1975, Journal of comparative physiology.

[45]  F. Barth Microfiber reinforcement of an arthropod cuticle , 1973, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[46]  Andrew R. Parker,et al.  Diffractive optics in spiders , 2003 .

[47]  F. Sultan Brain evolution (Communication arising): Analysis of mammalian brain architecture , 2002, Nature.

[48]  Jérôme Casas,et al.  Visual systems: Predator and prey views of spider camouflage , 2002, Nature.

[49]  I. Owens,et al.  Fluorescent signaling in parrots. , 2002, Science.

[50]  R. Gillespie,et al.  Portraits of Evolution: Studies of Coloration in Hawaiian Spiders , 2001 .

[51]  W. Nentwig,et al.  ONTOGENETIC CHANGE IN COLORATION AND WEB-BUILDING BEHAVIOR IN THE TROPICAL SPIDER ERIOPHORA FULIGINEA (ARANEAE, ARANEIDAE) , 2001 .

[52]  J. R. Sambles,et al.  Structural colour: Colour mixing in wing scales of a butterfly , 2000, Nature.

[53]  Mohan Srinivasarao,et al.  Nano‐Optics in the Biological World: Beetles, Butterflies, Birds, and Moths , 1999 .

[54]  D. V. Van Vranken,et al.  The fluorescence of scorpions and cataractogenesis. , 1999, Chemistry & biology.

[55]  R. Wootton,et al.  Quantified interference and diffraction in single Morpho butterfly scales , 1999, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[56]  R. Gillespie,et al.  Evolution and ecology of spider coloration. , 1998, Annual review of entomology.

[57]  H. Kleinig,et al.  Light-dependent regulation of carotenoid biosynthesis occurs at the level of phytoene synthase expression and is mediated by phytochrome in Sinapis alba and Arabidopsis thaliana seedlings. , 1997, The Plant journal : for cell and molecular biology.

[58]  R. Edwards,et al.  BEHAVIOR AND NICHE SELECTION BY MAILBOX SPIDERS , 1997 .

[59]  M. L. Draney GROUND-LAYER SPIDERS (ARANEAE) OF A GEORGIA PIEDMONT FLOODPLAIN AGROECOSYSTEM : SPECIES LIST, PHENOLOGY AND HABITAT SELECTIO N , 1997 .

[60]  R. Harrington,et al.  Nutritional ecology of insects, mites, spiders, and related invertebrates , 1988 .

[61]  J. Dalingwater Chelicerate Cuticle Structure , 1987 .

[62]  A. Holl Coloration and Chromes , 1987 .

[63]  W. Nentwig Ecophysiology of Spiders , 1987, Springer Berlin Heidelberg.

[64]  N. Fusenig Mammalian Epidermal Cells in Culture , 1986 .

[65]  R. Foelix,et al.  The biology of spiders. , 1987 .

[66]  D. Threlfall The biochemistry of the carotenoids, volume I, plants : T.W. Goodwin, Chapman & Hall, London, 1980. 377 pp. £27.50. , 1981 .

[67]  W. Eberhard,et al.  THE SINGLE LINE WEB OF PHORONCIDIA STUDO LEVI (ARANEAE: THERIDIIDAE): A PREY ATTRACTANT? , 1981 .

[68]  D A Parry,et al.  The chitin crystallite in arthropod cuticle. , 1976, Journal of cell science.

[69]  V. Seligy Ommochrome pigments of spiders , 1972 .

[70]  R. E. Marsh,et al.  The crystal structure of guanine monohydrate , 1971 .

[71]  V. Seligy Biochemical aspects of pigment variation in the spider Enoplognatha ovata (Clerck) (Araneae:Theridiidae) , 1969 .

[72]  K. M. Rudall The Chitin/Protein Complexes of Insect Cuticles , 1963 .

[73]  H. Nemenz Über den Bau der Kutikula und dessen Einfluß auf die Wasserabgabe bei Spinnen , 1955 .

[74]  R. F. Lawrence Fluorescence in Arthropoda , 1954 .

[75]  I. Newton,et al.  Discovery of the Dispersion of Light and of the Nature of Color (1672) , 1930, Isis.

[76]  O. Riddle OUR KNOWLEDGE OF MELANIN COLOR FORMATION AND ITS BEARING ON THE MENDELIAN DESCRIPTION OF HEREDITY , 1909 .

[77]  J. Emerton New England spiders of the family Theridiidae , 1882 .