Connectional parameters determine multisensory processing in a spiking network model of multisensory convergence

For the brain to synthesize information from different sensory modalities, connections from different sensory systems must converge onto individual neurons. However, despite being the definitive, first step in the multisensory process, little is known about multisensory convergence at the neuronal level. This lack of knowledge may be due to the difficulty for biological experiments to manipulate and test the connectional parameters that define convergence. Therefore, the present study used a computational network of spiking neurons to measure the influence of convergence from two separate projection areas on the responses of neurons in a convergent area. Systematic changes in the proportion of extrinsic projections, the proportion of intrinsic connections, or the amount of local inhibitory contacts affected the multisensory properties of neurons in the convergent area by influencing (1) the proportion of multisensory neurons generated, (2) the proportion of neurons that generate integrated multisensory responses, and (3) the magnitude of multisensory integration. These simulations provide insight into the connectional parameters of convergence that contribute to the generation of populations of multisensory neurons in different neural regions as well as indicate that the simple effect of multisensory convergence is sufficient to generate multisensory properties like those of biological multisensory neurons.

[1]  Leslie P. Keniston,et al.  Neuroanatomical identification of crossmodal auditory inputs to interneurons in somatosensory cortex , 2010, Experimental Brain Research.

[2]  H. Markram The Blue Brain Project , 2006, Nature Reviews Neuroscience.

[3]  Mark T. Wallace,et al.  The Development of Cortical Multisensory Integration , 2006, The Journal of Neuroscience.

[4]  C. Schroeder,et al.  Neuronal Oscillations and Multisensory Interaction in Primary Auditory Cortex , 2007, Neuron.

[5]  Benjamin A. Rowland,et al.  An Emergent Model of Multisensory Integration in Superior Colliculus Neurons , 2010, Front. Integr. Neurosci..

[6]  Hans Colonius,et al.  A Maximum-Likelihood Approach to Modeling Multisensory Enhancement , 2001, NIPS.

[7]  G. Ermentrout,et al.  Reliability, synchrony and noise , 2008, Trends in Neurosciences.

[8]  Jochen Braun Targeting visual motion , 2000, Nature Neuroscience.

[9]  Simona Monaco,et al.  Visual, somatosensory, and bimodal activities in the macaque parietal area PEc. , 2008, Cerebral cortex.

[10]  James M. Bower,et al.  The Book of GENESIS , 1994, Springer New York.

[11]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1990 .

[12]  H. R. Clemo,et al.  Sensory and multisensory representations within the cat rostral suprasylvian cortex , 2007, The Journal of comparative neurology.

[13]  Hun Ki Lim,et al.  A Neuronal Multisensory Processing Simulator , 2010, The 2010 International Joint Conference on Neural Networks (IJCNN).

[14]  Paul E Patton,et al.  A Two-Stage Unsupervised Learning Algorithm Reproduces Multisensory Enhancement in a Neural Network Model of the Corticotectal System , 2003, The Journal of Neuroscience.

[15]  N. Logothetis,et al.  Integration of Touch and Sound in Auditory Cortex , 2005, Neuron.

[16]  Mauro Ursino,et al.  A theoretical study of multisensory integration in the superior colliculus by a neural network model , 2008, Neural Networks.

[17]  Chris I. Baker,et al.  Integration of Visual and Auditory Information by Superior Temporal Sulcus Neurons Responsive to the Sight of Actions , 2005, Journal of Cognitive Neuroscience.

[18]  J. Duhamel,et al.  Multisensory Integration in the Ventral Intraparietal Area of the Macaque Monkey , 2007, The Journal of Neuroscience.

[19]  L. Abbott,et al.  Competitive Hebbian learning through spike-timing-dependent synaptic plasticity , 2000, Nature Neuroscience.

[20]  Christoph Kayser,et al.  Spatial Organization of Multisensory Responses in Temporal Association Cortex , 2009, The Journal of Neuroscience.

[21]  M. Wallace,et al.  Superior colliculus neurons use distinct operational modes in the integration of multisensory stimuli. , 2005, Journal of neurophysiology.

[22]  Lizabeth M Romanski,et al.  Representation and integration of auditory and visual stimuli in the primate ventral lateral prefrontal cortex. , 2007, Cerebral cortex.

[23]  M A Meredith,et al.  The influence of stimulus properties on multisensory processing in the awake primate superior colliculus. , 2001, Canadian journal of experimental psychology = Revue canadienne de psychologie experimentale.

[24]  A. Diederich,et al.  Bimodal and trimodal multisensory enhancement: Effects of stimulus onset and intensity on reaction time , 2004, Perception & psychophysics.

[25]  Ronald J. MacGregor,et al.  Neural and brain modeling , 1987 .

[26]  B. Stein,et al.  Visual, auditory, and somatosensory convergence on cells in superior colliculus results in multisensory integration. , 1986, Journal of neurophysiology.

[27]  T. Stanford,et al.  Multisensory Integration Shortens Physiological Response Latencies , 2007, The Journal of Neuroscience.

[28]  Thomas J. Anastasio,et al.  Using Bayes' Rule to Model Multisensory Enhancement in the Superior Colliculus , 2000, Neural Computation.

[29]  Kelvin S. Oie,et al.  Multisensory fusion: simultaneous re-weighting of vision and touch for the control of human posture. , 2002, Brain research. Cognitive brain research.

[30]  J. Konorski Conditioned reflexes and neuron organization. , 1948 .

[31]  N. Logothetis,et al.  Visual modulation of neurons in auditory cortex. , 2008, Cerebral cortex.

[32]  Thomas Mergner,et al.  Modeling sensorimotor control of human upright stance. , 2007, Progress in brain research.

[33]  Barry Stein,et al.  A Bayesian model unifies multisensory spatial localization with the physiological properties of the superior colliculus , 2007, Experimental Brain Research.

[34]  Khurshid Ahmad,et al.  Modeling Multisensory Enhancement with Self-organizing Maps , 2009, Front. Comput. Neurosci..

[35]  Eugene M. Izhikevich,et al.  Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting , 2006 .

[36]  H. R. Clemo,et al.  Cross-modal circuitry between auditory and somatosensory areas of the cat anterior ectosylvian sulcal cortex: a 'new' inhibitory form of multisensory convergence. , 2004, Cerebral cortex.

[37]  Terrence R Stanford,et al.  A Model of the Neural Mechanisms Underlying Multisensory Integration in the Superior Colliculus , 2007, Perception.

[38]  A. Diederich,et al.  Why aren’t all deep superior colliculus neurons multisensory? A Bayes’ ratio analysis , 2004, Cognitive, Affective, & Behavioral Neuroscience.

[39]  F. Reinoso-suárez,et al.  Topographical organization of the cortical afferent connections to the cortex of the anterior ectosylvian sulcus in the cat , 2004, Experimental Brain Research.

[40]  G. Edelman,et al.  Large-scale model of mammalian thalamocortical systems , 2008, Proceedings of the National Academy of Sciences.

[41]  Nicholas T. Carnevale,et al.  The NEURON Book: Epilogue , 2006 .

[42]  H. R. Clemo,et al.  Somatosensory and multisensory properties of the medial bank of the ferret rostral suprasylvian sulcus , 2009, Experimental Brain Research.

[43]  G. Calvert Crossmodal processing in the human brain: insights from functional neuroimaging studies. , 2001, Cerebral cortex.

[44]  Z Vass,et al.  Trigeminal ganglion innervates the auditory brainstem , 2000, The Journal of comparative neurology.

[45]  Bernard W. Balleine,et al.  Frontiers in Integrative Neuroscience Integrative Neuroscience , 2022 .

[46]  A. Ghazanfar,et al.  Is neocortex essentially multisensory? , 2006, Trends in Cognitive Sciences.

[47]  M. Meredith,et al.  Are Bimodal Neurons the Same throughout the Brain , 2012 .

[48]  John G McHaffie,et al.  Axon morphologies and convergence patterns of projections from different sensory-specific cortices of the anterior ectosylvian sulcus onto multisensory neurons in the cat superior colliculus. , 2009, Cerebral cortex.

[49]  E. Capaldi,et al.  The organization of behavior. , 1992, Journal of applied behavior analysis.

[50]  J. DeFelipe,et al.  Neocortical neuronal diversity: chemical heterogeneity revealed by colocalization studies of classic neurotransmitters, neuropeptides, calcium-binding proteins, and cell surface molecules. , 1993, Cerebral cortex.

[51]  Leslie P. Keniston,et al.  Not Just for Bimodal Neurons Anymore: The Contribution of Unimodal Neurons to Cortical Multisensory Processing , 2009, Brain Topography.

[52]  M. Shanahan Dynamical complexity in small-world networks of spiking neurons. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[53]  Eugene M. Izhikevich,et al.  Simple model of spiking neurons , 2003, IEEE Trans. Neural Networks.

[54]  Sidney S. Simon,et al.  Merging of the Senses , 2008, Front. Neurosci..

[55]  D. Pandya,et al.  Parietal, temporal, and occipita projections to cortex of the superior temporal sulcus in the rhesus monkey: A retrograde tracer study , 1994, The Journal of comparative neurology.

[56]  R. FitzHugh Impulses and Physiological States in Theoretical Models of Nerve Membrane. , 1961, Biophysical journal.