Iterative Methods for Pseudomonotone Variational Inequalities and Fixed-Point Problems

In this paper, we introduce an iterative scheme for finding a common element of the set of solution of a pseudomonotone, Lipschitz-continuous variational inequality problem and the set of common fixed points of an infinite family of nonexpansive mappings. The proposed iterative method combines two well-known schemes: extragradient and approximate proximal methods. We derive some necessary and sufficient conditions for strong convergence of the sequences generated by the proposed scheme.

[1]  W. R. Mann,et al.  Mean value methods in iteration , 1953 .

[2]  R. Rockafellar Monotone Operators and the Proximal Point Algorithm , 1976 .

[3]  Monica Bianchi,et al.  Coercivity Conditions for Equilibrium Problems , 2005 .

[4]  Tomonari Suzuki,et al.  Strong convergence theorems for infinite families of nonexpansive mappings in general Banach spaces , 2005 .

[5]  W. Oettli,et al.  From optimization and variational inequalities to equilibrium problems , 1994 .

[6]  S. Reich Weak convergence theorems for nonexpansive mappings in Banach spaces , 1979 .

[7]  Hong-Kun Xu VISCOSITY APPROXIMATION METHODS FOR NONEXPANSIVE MAPPINGS , 2004 .

[8]  M. Noor,et al.  On modified hybrid steepest-descent methods for general variational inequalities , 2007 .

[9]  Yeol Je Cho,et al.  An Iterative Method for an Infinite Family of Nonexpansive Mappings in Hilbert Spaces , 2009 .

[10]  Muhammad Aslam Noor,et al.  Wiener-Hopf equation technique for variational inequalities and nonexpansive mappings , 2007, Appl. Math. Comput..

[11]  Monica Bianchi,et al.  Generalized monotone bifunctions and equilibrium problems , 1996 .

[12]  Felix E. Browder,et al.  Convergence of approximants to fixed points of nonexpansive nonlinear mappings in banach spaces , 1967 .

[13]  Xiaoming Yuan,et al.  An approximate proximal-extragradient type method for monotone variational inequalities , 2004 .

[14]  Giuseppe Marino,et al.  A general iterative method for nonexpansive mappings in Hilbert spaces , 2006 .

[15]  J. Chancelier Iterative schemes for computing fixed points of nonexpansive mappings in Banach spaces , 2007, 0712.1172.

[16]  R. Wittmann Approximation of fixed points of nonexpansive mappings , 1992 .

[17]  Hong-Kun Xu A variable Krasnosel'skii–Mann algorithm and the multiple-set split feasibility problem , 2006 .

[18]  Hong-Kun Xu,et al.  Strong convergence of the CQ method for fixed point iteration processes , 2006 .

[19]  Jen-Chih Yao,et al.  An extragradient-like approximation method for variational inequality problems and fixed point problems , 2007, Appl. Math. Comput..

[20]  Abdellah Bnouhachem,et al.  An additional projection step to He and Liao's method for solving variational inequalities , 2007 .

[21]  Lu-Chuan Zeng,et al.  STRONG CONVERGENCE THEOREM BY AN EXTRAGRADIENT METHOD FOR FIXED POINT PROBLEMS AND VARIATIONAL INEQUALITY PROBLEMS , 2006 .

[22]  G. M. Korpelevich The extragradient method for finding saddle points and other problems , 1976 .

[23]  W. Takahashi,et al.  STRONG CONVERGENCE TO COMMON FIXED POINTS OF INFINITE NONEXPANSIVE MAPPINGS AND APPLICATIONS , 2001 .

[24]  R. Glowinski,et al.  Numerical Methods for Nonlinear Variational Problems , 1985 .

[25]  Suliman Al-Homidan,et al.  An iterative scheme for equilibrium problems and fixed point problems of strict pseudo-contraction mappings , 2009 .

[26]  Heinz H. Bauschke The Approximation of Fixed Points of Compositions of Nonexpansive Mappings in Hilbert Space , 1996 .

[27]  Muhammad Aslam Noor,et al.  Projection-proximal methods for general variational inequalities , 2006 .

[28]  M. Noor,et al.  Some aspects of variational inequalities , 1993 .

[29]  W. Takahashi,et al.  Strong convergence theorem for a generalized equilibrium problem and a nonexpansive mapping in a Hilbert space , 2008 .

[30]  Vittorio Colao,et al.  ON AN IMPLICIT HIERARCHICAL FIXED POINT APPROACH TO VARIATIONAL INEQUALITIES , 2009 .

[31]  Jen-Chih Yao,et al.  Variational Inequalities with Generalized Monotone Operators , 1994, Math. Oper. Res..

[32]  Habtu Zegeye,et al.  Viscosity approximation methods for a common fixed point of finite family of nonexpansive mappings , 2007, Appl. Math. Comput..

[33]  W. A. Kirk,et al.  Topics in Metric Fixed Point Theory , 1990 .

[34]  Prasit Cholamjiak A Hybrid Iterative Scheme for Equilibrium Problems, Variational Inequality Problems, and Fixed Point Problems in Banach Spaces , 2009 .

[35]  Alfredo N. Iusem,et al.  Inexact Proximal Point Methods for Equilibrium Problems in Banach Spaces , 2007 .

[36]  A. Iusem,et al.  Iterative Algorithms for Equilibrium Problems , 2003 .

[37]  Giuseppe Marino,et al.  On a Two-Step Algorithm for Hierarchical Fixed Point Problems and Variational Inequalities , 2009 .

[38]  Marc Teboulle,et al.  Weak Convergence of an Iterative Method for Pseudomonotone Variational Inequalities and Fixed-Point Problems , 2010 .

[39]  Muhammad Aslam Noor,et al.  Some new extragradient iterative methods for variational inequalities , 2009 .

[40]  Convergence theorems for fixed point problems and variational inequality problems in Hilbert spaces , 2009 .

[41]  Jen-Chih Yao,et al.  Convergence Theorem for Equilibrium Problems and Fixed Point Problems of Infinite Family of Nonexpansive Mappings , 2007 .

[42]  Muhammad Aslam Noor,et al.  On viscosity iterative methods for variational inequalities , 2007 .

[43]  Jen-Chih Yao,et al.  On modified iterative method for nonexpansive mappings and monotone mappings , 2007, Appl. Math. Comput..

[44]  Z. Opial Weak convergence of the sequence of successive approximations for nonexpansive mappings , 1967 .

[45]  Shih-Sen Chang,et al.  Viscosity approximation methods for a finite family of nonexpansive mappings in Banach spaces , 2006 .

[46]  A. Iusem,et al.  New existence results for equilibrium problems , 2003 .

[47]  Monica Bianchi,et al.  A Note on Equilibrium Problems with Properly Quasimonotone Bifunctions , 2001, J. Glob. Optim..

[48]  Muhammad Aslam Noor,et al.  Some developments in general variational inequalities , 2004, Appl. Math. Comput..

[49]  Muhammad Aslam Noor,et al.  Self-adaptive projection algorithms for general variational inequalities , 2004, Appl. Math. Comput..

[50]  Wataru Takahashi,et al.  Strong Convergence Theorem by a Hybrid Method for Nonexpansive Mappings and Lipschitz-Continuous Monotone Mappings , 2006, SIAM J. Optim..

[51]  Wataru Takahashi,et al.  Strong Convergence Theorem by a New Hybrid Method for Equilibrium Problems and Relatively Nonexpansive Mappings , 2008 .

[52]  Hong-Kun Xu Iterative Algorithms for Nonlinear Operators , 2002 .