Population agglomeration is a harbinger of the spatial complexity of COVID-19

[1]  X. Heping Multifractals , 2020, Fractals in Rock Mechanics.

[2]  S. Matthews,et al.  A spatial analysis of the COVID-19 period prevalence in U.S. counties through June 28, 2020: where geography matters? , 2020, Annals of Epidemiology.

[3]  Gabriel G. Katul,et al.  Global convergence of COVID-19 basic reproduction number and estimation from early-time SIR dynamics , 2020, medRxiv.

[4]  B. Weimer,et al.  Pandemic dynamics of COVID-19 using epidemic stage, instantaneous reproductive number and pathogen genome identity (GENI) score: modeling molecular epidemiology , 2020, medRxiv.

[5]  G. Chowell,et al.  Transmission potential and severity of COVID-19 in South Korea , 2020, International Journal of Infectious Diseases.

[6]  Ruiyun Li,et al.  Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV-2) , 2020, Science.

[7]  Jessica T Davis,et al.  The effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreak , 2020, Science.

[8]  Tony E. Smith,et al.  Common power laws for cities and spatial fractal structures , 2020, Proceedings of the National Academy of Sciences.

[9]  R. Ziff,et al.  Fractal kinetics of COVID-19 pandemic , 2020, medRxiv.

[10]  Juan A. Martínez-Román,et al.  Forecast of the evolution of the contagious disease caused by novel coronavirus (2019-nCoV) in China , 2020, 2002.04739.

[11]  A. Vespignani,et al.  The effect of travel restrictions on the spread of the 2019 novel coronavirus (2019-nCoV) outbreak , 2020 .

[12]  D. Rajan Probability, Random Variables, and Stochastic Processes , 2017 .

[13]  Danilo Comminiello,et al.  Group sparse regularization for deep neural networks , 2016, Neurocomputing.

[14]  A. Kucharski,et al.  The role of superspreading in Middle East respiratory syndrome coronavirus (MERS-CoV) transmission. , 2015, Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin.

[15]  Piet Van Mieghem,et al.  Epidemic processes in complex networks , 2014, ArXiv.

[16]  V. Jansen,et al.  Modelling the influence of human behaviour on the spread of infectious diseases: a review , 2010, Journal of The Royal Society Interface.

[17]  S. Blower,et al.  Modeling influenza epidemics and pandemics: insights into the future of swine flu (H1N1) , 2009, BMC medicine.

[18]  Aarnout Brombacher,et al.  Probability... , 2009, Qual. Reliab. Eng. Int..

[19]  M. Keeling,et al.  Modeling Infectious Diseases in Humans and Animals , 2007 .

[20]  Alessandro Vespignani,et al.  Epidemic modeling in complex realities. , 2007, Comptes rendus biologies.

[21]  Daniele Veneziano,et al.  Multifractality and rainfall extremes: A review , 2006 .

[22]  J. Hyman,et al.  Model Parameters and Outbreak Control for SARS , 2004, Emerging infectious diseases.

[23]  A. S. Carstea,et al.  Extending the SIR epidemic model , 2004 .

[24]  M. Fedi Global and Local Multiscale Analysis of Magnetic Susceptibility Data , 2003 .

[25]  M. Boufadel,et al.  Multifractal anisotropic scaling of the hydraulic conductivity , 2003 .

[26]  K. Dietz,et al.  Daniel Bernoulli's epidemiological model revisited. , 2002, Mathematical biosciences.

[27]  O. Bjørnstad,et al.  Dynamics of measles epidemics: Estimating scaling of transmission rates using a time series sir model , 2002 .

[28]  D. Schertzer,et al.  Multifractal objective analysis: conditioning and interpolation , 2001 .

[29]  F. Molz,et al.  Multifractal scaling of the intrinsic permeability , 2000 .

[30]  She,et al.  Universal scaling laws in fully developed turbulence. , 1994, Physical review letters.

[31]  G. K. Boman,et al.  A fractal‐based stochastic interpolation scheme in subsurface hydrology , 1993 .

[32]  Shaun Lovejoy,et al.  Universal Multifractals: Theory and Observations for Rain and Clouds , 1993 .

[33]  Shaun Lovejoy,et al.  Hard and soft multifractal processes , 1992 .

[34]  Shigeo Kida,et al.  Log-Stable Distribution and Intermittency of Turbulence , 1991 .

[35]  P. Brax,et al.  Levy stable law description of intermittent behaviour and quark-gluon plasma phase transitions , 1991 .

[36]  V. Gupta,et al.  Multiscaling properties of spatial rain-fall and river flow distributions , 1990 .

[37]  Shaun Lovejoy,et al.  Multifractals, universality classes and satellite and radar measurements of cloud and rain fields , 1990 .

[38]  C. Meneveau,et al.  The multifractal spectrum of the dissipation field in turbulent flows , 1987 .

[39]  C. Meneveau,et al.  Simple multifractal cascade model for fully developed turbulence. , 1987, Physical review letters.

[40]  D. Schertzer,et al.  Physical modeling and analysis of rain and clouds by anisotropic scaling multiplicative processes , 1987 .

[41]  H. G. E. Hentschel,et al.  The infinite number of generalized dimensions of fractals and strange attractors , 1983 .

[42]  U. Frisch FULLY DEVELOPED TURBULENCE AND INTERMITTENCY , 1980 .

[43]  W. O. Kermack,et al.  Contributions to the mathematical theory of epidemics—II. The problem of endemicity , 1991, Bulletin of mathematical biology.

[44]  B. Vidakovic,et al.  Estimating global and local scaling exponents in turbulent flows using discrete wavelet transformations , 2001 .

[45]  D. Schertzer,et al.  The simulation of universal multifractals. , 1993 .

[46]  Shaun Lovejoy,et al.  On the Determination of Universal Multifractal Parameters in Turbulence , 1992 .

[47]  D. Schertzer,et al.  On the Determination of the Codimension Function , 1991 .

[48]  W. O. Kermack,et al.  Contributions to the mathematical theory of epidemics—III. Further studies of the problem of endemicity , 1991 .

[49]  W. O. Kermack,et al.  Contributions to the mathematical theory of epidemics—I , 1991, Bulletin of mathematical biology.

[50]  Michael Ghil,et al.  Turbulence and predictability in geophysical fluid dynamics and climate dynamics , 1985 .

[51]  Athanasios Papoulis,et al.  Probability, Random Variables and Stochastic Processes , 1965 .