Lagrangian versus Eulerian integration errors

Abstract The possibility to use a Lagrangian frame to solve problems with large time-steps was successfully explored previously by the authors for the solution of homogeneous incompressible fluids and also for solving multi-fluid problems (Idelsohn et al. 2012; 2014; 2013). The strategy used by the authors was named Particle Finite Element Method second generation (PFEM-2). The objective of this paper is to demonstrate in which circumstances the use of a Lagrangian frame with particles is more accurate than a classical Eulerian finite element method, and when large time-steps and/or coarse meshes may be used.

[1]  Sergio Idelsohn,et al.  A fast and accurate method to solve the incompressible Navier‐Stokes equations , 2013 .

[2]  J. Monaghan Smoothed particle hydrodynamics , 2005 .

[3]  Eugenio Oñate,et al.  Fluid-structure interaction using the particle finite element method , 2006 .

[4]  J. C. Cante,et al.  Particle Finite Element Methods in Solid Mechanics Problems , 2007 .

[5]  Eugenio Oñate,et al.  Analysis of multifluid flows with large time steps using the particle finite element method , 2014 .

[6]  Eugenio Oñate,et al.  Unified Lagrangian formulation for elastic solids and incompressible fluids: Application to fluid–structure interaction problems via the PFEM , 2008 .

[7]  J. Monaghan,et al.  Kernel estimates as a basis for general particle methods in hydrodynamics , 1982 .

[8]  Eugenio Oñate,et al.  The particle finite element method: a powerful tool to solve incompressible flows with free‐surfaces and breaking waves , 2004 .

[9]  J. Monaghan,et al.  Smoothed particle hydrodynamics: Theory and application to non-spherical stars , 1977 .

[10]  Suad Jakirlić,et al.  Drop impact onto a liquid layer of finite thickness: dynamics of the cavity evolution. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  Eugenio Oñate,et al.  Advances in the particle finite element method for the analysis of fluid-multibody interaction and bed erosion in free surface flows , 2008 .

[12]  W. X. Wang,et al.  Isoparametric finite point method in computational mechanics , 2003 .

[13]  Z. Więckowski The material point method in large strain engineering problems , 2004 .

[14]  Eugenio Oñate,et al.  Multi-fluid flows with the Particle Finite Element Method , 2009 .

[15]  Eugenio Oñate,et al.  The meshless finite element method , 2003 .

[16]  S. Osher,et al.  Level set methods: an overview and some recent results , 2001 .

[17]  E. Oñate,et al.  A stabilized finite point method for analysis of fluid mechanics problems , 1996 .

[18]  Eugenio Oñate,et al.  Large time-step explicit integration method for solving problems with dominant convection , 2012 .

[19]  Eugenio Oñate,et al.  A finite point method for incompressible flow problems , 2000 .

[20]  J. Brackbill,et al.  FLIP: A method for adaptively zoned, particle-in-cell calculations of fluid flows in two dimensions , 1986 .

[21]  Eugenio Oñate,et al.  Particle finite element method in fluid-mechanics including thermal convection-diffusion , 2005 .

[22]  Antonia Larese,et al.  Validation of the particle finite element method (PFEM) for simulation of free surface flows , 2008 .

[23]  N. Nigro,et al.  An extended mixture model for the simultaneous treatment of small‐scale and large‐scale interfaces , 2014 .

[24]  S. Zalesak Fully multidimensional flux-corrected transport algorithms for fluids , 1979 .

[25]  Wing Kam Liu,et al.  Reproducing kernel particle methods , 1995 .

[26]  L. Quartapelle,et al.  A projection FEM for variable density incompressible flows , 2000 .

[27]  S. P. Neuman Adaptive Eulerian–Lagrangian finite element method for advection–dispersion , 1984 .

[28]  Eugenio Oñate,et al.  The ALE/Lagrangian Particle Finite Element Method: A new approach to computation of free-surface flows and fluid–object interactions , 2007 .

[29]  Eugenio Oñate,et al.  Polyhedrization of an arbitrary 3D point set , 2003 .

[30]  S. Koshizuka A particle method for incompressible viscous flow with fluid fragmentation , 1995 .

[31]  Joseph J Monaghan,et al.  An introduction to SPH , 1987 .

[32]  Ian M. Mitchell,et al.  A hybrid particle level set method for improved interface capturing , 2002 .

[33]  Masahisa Tabata,et al.  Stability and convergence of a Galerkin‐characteristics finite element scheme of lumped mass type , 2009 .

[34]  A. Huerta,et al.  Finite Element Methods for Flow Problems , 2003 .

[35]  E. Oñate,et al.  A FINITE POINT METHOD IN COMPUTATIONAL MECHANICS. APPLICATIONS TO CONVECTIVE TRANSPORT AND FLUID FLOW , 1996 .

[36]  S. Koshizuka,et al.  Moving-Particle Semi-Implicit Method for Fragmentation of Incompressible Fluid , 1996 .