Simulation of the thermospheric tides at equinox with the National Center for Atmospheric Research Thermospheric General Circulation Model

Numerical calculations of the thermospheric tidal winds and temperatures at equinox are presented. The calculations were made using the National Center for Atmospheric Research thermospheric general circulation model (TGCM), which includes the effects of viscosity, conductivity, diffusion, ion drag, winds, and temperature gradients. The thermospheric diurnal and semidiurnal tides are excited in situ by solar heating and by ion-neutral momentum coupling. The semidiurnal tidal calculations also include the effects of upward propagating waves generated by heating in the lower atmosphere. This semidiurnal propagating component is modeled by use of the classical tidal perturbations as lower boundary conditions. The model is tuned by adjusting the propagating tidal forcing term until calculated semidiurnal wind and temperature fields best approximate incoherent scatter observations. The tidal TGCM results are consistent with previous theoretical work and successfully reproduce high-altitude temperature and meridional velocity data, but they give significantly lower magnitudes for velocities and temperatures near 160 km than are seen by observations.

[1]  David N. Anderson,et al.  A semi‐empirical low‐latitude ionospheric model , 1987 .

[2]  R. Dickinson,et al.  Thermospheric general circulation with coupled dynamics and composition , 1984 .

[3]  A. Hedin,et al.  A revised thermospheric model based on mass spectrometer and incoherent scatter data - MSIS-83 , 1983 .

[4]  R. Wand Lower thermospheric structure from Millstone Hill incoherent scatter radar measurements 2. Semidiurnal temperature component , 1983 .

[5]  R. Roble,et al.  On the global mean temperature of the thermosphere , 1983 .

[6]  Jeffrey M. Forbes,et al.  Atmospheric tide: 2. The solar and lunar semidiurnal components , 1982 .

[7]  Jeffrey M. Forbes,et al.  Atmospheric tides: 1. Model description and results for the solar diurnal component , 1982 .

[8]  J. Forbes,et al.  A Compendium of Theoretical Atmospheric Tidal Structures. Part II. Thermospheric Extensions of the Classical Expansion Functions for Semidiurnal Tides. , 1982 .

[9]  P. Richards,et al.  The seasonal effect of nitric oxide cooling on the thermospheric U.V. heat budget , 1982 .

[10]  R. Dickinson,et al.  Global circulation and temperature structure of thermosphere with high‐latitude plasma convection , 1982 .

[11]  J. Devore,et al.  The Semidiurnal Atmospheric Tide at the Equinoxes: A Spectral Study with Mean-Wind-Related Influences and Improved Heating Rates , 1981 .

[12]  H. Teitelbaum,et al.  Momentum transfer to the thermosphere by atmospheric tides , 1981 .

[13]  R. Harper Some results on mean tidal structure and day-to-day variability over Arecibo , 1981 .

[14]  Raymond G. Roble,et al.  A three‐dimensional general circulation model of the thermosphere , 1981 .

[15]  H. E. Hinteregger,et al.  Representations of solar EUV fluxes for aeronomical applications , 1981 .

[16]  M. Torr,et al.  Solar flux variability in the Schumann‐Runge continuum as a function of solar cycle 21 , 1980 .

[17]  Ronald F. Woodman,et al.  An empirical model of quiet-day ionospheric electric fields at middle and low latitudes , 1980 .

[18]  W. Oliver Improved Millstone Hill exospheric temperature measurements: Evidence for a seasonal variation of the magnetic activity effect , 1980 .

[19]  A. Hedin,et al.  The semidiurnal and terdiurnal tides in the equatorial thermosphere from AE‐E measurements , 1980 .

[20]  J. Devore,et al.  Influence of mean zonal motion and meridional temperature gradients on the solar semidiurnal atmospheric tide - A revised spectral study with improved heating rates , 1980 .

[21]  Marsha R. Torr,et al.  Ionization frequencies for major thermospheric constituents as a function of solar cycle 21 , 1979 .

[22]  R. Walterscheid,et al.  Influence of Mean Zonal Motion and Meridional Temperature Gradients on the Solar Semidiurnal Atmospheric Tide: A Spectral Study. Part I: Theory , 1979 .

[23]  R. Walterscheid,et al.  Influence of Mean Zonal Motion and Meridional Temperature Gradients on the Solar Semidiurnal Atmospheric Tide: A Spectral Study. Part II: Numerical Results , 1979 .

[24]  H. Carlson,et al.  Tides and the midnight temperature anomaly in the thermosphere , 1979 .

[25]  N. Spencer,et al.  The midnight temperature maximum in the Earth's equatorial thermosphere , 1979 .

[26]  R. Harper A semidiurnal tide in the meridional wind at F region heights at low latitudes , 1979 .

[27]  J. Forbes,et al.  Thermal excitation of atmospheric tides due to insolation absorption by O3 and H2O , 1978 .

[28]  J. Salah,et al.  Preliminary results from the URSI/IAGA cooperative tidal observations program (CTOP) , 1978 .

[29]  R. Bernard Incoherent scatter results for co-ordinated special intervals at St. Santin (France) , 1978 .

[30]  S. Miyahara Zonal Mean Winds Induced by Vertically Propagating Atmospheric Tidal Waves in the Lower Thermosphere: Part II , 1978 .

[31]  R. Dickinson,et al.  Seasonal and solar cycle variations of the zonal mean circulation in the thermosphere , 1977 .

[32]  R. Harper Tidal winds in the 100‐ to 200‐km region at Arecibo , 1977 .

[33]  J. Salah,et al.  Comparison of simultaneous tidal observations by incoherent scatter radars , 1977 .

[34]  Joseph E. Salah,et al.  A global thermospheric model based on mass spectrometer and incoherent scatter data MSIS, 1. N2 density and temperature , 1977 .

[35]  Carl A. Reber,et al.  A global thermospheric model based on mass spectrometer and incoherent scatter data MSIS, 2. Composition , 1977 .

[36]  J. Forbes,et al.  Solar Diurnal Tide in the Thermosphere , 1976 .

[37]  R. Wand Semidiurnal tide in the E region from incoherent scatter measurements at Arecibo , 1976 .

[38]  R. Lindzen A modal decomposition of the semidiurnal tide in the lower thermosphere , 1976 .

[39]  R. Lindzen,et al.  Solar Semidiurnal Tide in the Thermosphere , 1976 .

[40]  Y. Chiu An improved phenomenological model of ionospheric density , 1975 .

[41]  J. Evans,et al.  Tidal effects in the E region from incoherent scatter radar observations , 1975 .

[42]  J. Salah,et al.  Tides in the temperature of the lower thermosphere at mid‐latitudes , 1974 .

[43]  R. Lindzen,et al.  Effects of Mean Winds and Horizontal Temperature Gradients on Solar and Lunar Semidiurnal Tides in the Atmosphere. , 1974 .

[44]  R. Bernard Tides in the E-region observed by incoherent scatter over Saint Santin , 1974 .

[45]  H. Volland Solutions of Laplace's tidal equation for complex frequencies , 1974 .

[46]  P. Amayenc Tidal oscillations of the meridional neutral wind at midlatitudes , 1974 .

[47]  J. Fontanari,et al.  Observation of neutral temperature tidal‐type oscillations in the F1 region , 1974 .

[48]  H. Volland,et al.  A numerical study of three-dimensional diurnal variations within the thermosphere. , 1973 .

[49]  R. F. Donnelly,et al.  The 1-3000 Å solar flux for a moderate level of solar activity for use in modeling the ionosphere and upper atmosphere , 1973 .

[50]  P. Amayenc,et al.  Height structure of tidal winds as inferred from incoherent scatter observations , 1972 .

[51]  J. Wallace,et al.  On Boundary Layer Dynamics and the ITCZ , 1971 .

[52]  R. Lindzen,et al.  Internal gravity waves in atmospheres with realistic dissipation and temperature part II. Thermal tides excited below the mesopause , 1971 .

[53]  R. Lindzen Internal gravity waves in atmospheres with realistic dissipation and temperature part I. Mathematical development and propagation of waves into the thermosphere , 1970 .

[54]  H. Hinteregger The extreme ultraviolet solar spectrum and its variation during a solar cycle. , 1970 .

[55]  E. M. Reeves,et al.  Measurements in the solar spectrum between 1400 and 1875 Å with a rocket-borne spectrometer , 1969 .

[56]  Henry Rishbeth,et al.  Introduction to ionospheric physics , 1969 .

[57]  R. Lindzen On the Relation of Wave Behavior to Source Strength and Distribution in a Propagating Medium , 1966 .

[58]  F. S. Johnson Temperatures in the high atmosphere , 1958 .