A comprehensive review on a passive (phase change materials) and an active (thermoelectric cooler) battery thermal management system and their limitations

Abstract A battery thermal management system (BTMS) has become an essential part in battery-driven electric vehicles (EVs) in order to remove the generated heat from the battery which leads to enhanced performance. BTMSs have been implemented in EVs by adopting different technologies that include natural air cooling systems, forced air cooling systems, liquid cooling systems, and using heat pipes and fins. However, phase change material (PCM) embedded systems have gained a lot of attention due to their availability, low cost, and high sensible and latent heat in the field of BTMS. In the last two decades, thermoelectric coolers (TECs) have also been applied to BTMSs to make an active or semi-passive system with another cooling system. In this paper, a state of the science comprehensive literature review is presented on PCM (a passive system) and TEC (an active system) based BTMSs. A synthesis of the literature is presented in a tabular format to give a clear indication on the relative performances of the BTMSs. Moreover, limitations of the batteries, PCMs, and TECs are also discussed to identify the future research possibilities in the area of BTMS for EVs.

[1]  Tao Wang,et al.  Thermal investigation of lithium-ion battery module with different cell arrangement structures and forced air-cooling strategies , 2014 .

[2]  Bin Wu,et al.  Examining temporal and spatial variations of internal temperature in large-format laminated battery with embedded thermocouples , 2013 .

[3]  Dongpu Cao,et al.  An investigation of lithium-ion battery thermal management using paraffin/porous-graphite-matrix composite , 2015 .

[4]  F. V. Conte,et al.  Battery and battery management for hybrid electric vehicles: a review , 2006, Elektrotech. Informationstechnik.

[5]  Ji‐Guang Zhang,et al.  Effects of entropy changes in anodes and cathodes on the thermal behavior of lithium ion batteries , 2009 .

[6]  Li Jia,et al.  Paraffin and paraffin/aluminum foam composite phase change material heat storage experimental study based on thermal management of Li-ion battery , 2015 .

[7]  M. Alipanah,et al.  Numerical studies of lithium-ion battery thermal management systems using phase change materials and metal foams , 2016 .

[8]  Christopher J. Orendorff,et al.  Failure propagation in multi-cell lithium ion batteries , 2015 .

[9]  Dong Hyup Jeon,et al.  Numerical modeling of lithium ion battery for predicting thermal behavior in a cylindrical cell , 2014 .

[10]  K. Goodson,et al.  Material and manufacturing cost considerations for thermoelectrics , 2014 .

[11]  Ahmad Pesaran,et al.  Thermal Management of Batteries in Advanced Vehicles Using Phase-Change Materials (Presentation) , 2007 .

[12]  Chun Yang,et al.  Numerical analysis and experimental visualization of phase change material melting process for thermal management of cylindrical power battery , 2018 .

[13]  B. Li,et al.  Experimental investigation on EV battery cooling and heating by heat pipes , 2015 .

[14]  Chin-Hsiang Cheng,et al.  Development of an energy-saving module via combination of solar cells and thermoelectric coolers for green building applications , 2011 .

[15]  Lu Qingchun,et al.  Thermal modeling of passive thermal management system with phase change material for LiFePO4 battery , 2012, 2012 IEEE Vehicle Power and Propulsion Conference.

[16]  Zhiguo Qu,et al.  Numerical model of the passive thermal management system for high-power lithium ion battery by using porous metal foam saturated with phase change material , 2014 .

[17]  Zhonghao Rao,et al.  Thermal performance of phase change material/oscillating heat pipe-based battery thermal management system , 2016 .

[18]  Bill J. Van Heyst,et al.  A review of the state of the science on wearable thermoelectric power generators (TEGs) and their existing challenges , 2017 .

[19]  Weixiong Wu,et al.  Experimental investigation on the thermal performance of heat pipe-assisted phase change material based battery thermal management system , 2017 .

[20]  Ziping Feng,et al.  Thermal management performances of PCM/water cooling-plate using for lithium-ion battery module based on non-uniform internal heat source , 2017 .

[21]  T. Fuller,et al.  A Critical Review of Thermal Issues in Lithium-Ion Batteries , 2011 .

[22]  Ibrahim Dincer,et al.  A novel phase change based cooling system for prismatic lithium ion batteries. , 2018 .

[23]  Qingsong Wang,et al.  Numerical study on the thermal performance of a composite board in battery thermal management system , 2016 .

[24]  Nandy Putra,et al.  The characterization of a cascade thermoelectric cooler in a cryosurgery device. , 2010 .

[25]  M. Pan,et al.  Cutting copper fiber/paraffin composite phase change material discharging experimental study based on heat dissipation capability of Li-ion battery , 2017 .

[26]  Wei Zhu,et al.  Design, fabrication and numerical analysis of compact thermal management system integrated with composite phase change material and thermal bridge , 2018 .

[27]  Tao Wang,et al.  Development of efficient air-cooling strategies for lithium-ion battery module based on empirical heat source model , 2015 .

[28]  Zhonghao Rao,et al.  Experimental investigation of battery thermal management system for electric vehicle based on paraffin/copper foam , 2015 .

[29]  V. V. Tyagi,et al.  PCM thermal storage in buildings: A state of art , 2007 .

[30]  Seo Young Kim,et al.  Thermal design analysis and performance test of a 1kW thermoelectric battery cooler , 2014, Fourteenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm).

[31]  Yucheng He,et al.  Experimental study of a passive thermal management system for high-powered lithium ion batteries using porous metal foam saturated with phase change materials , 2014 .

[32]  Jean-François Fourmigué,et al.  An innovative practical battery thermal management system based on phase change materials: Numerical and experimental investigations , 2018 .

[33]  Oluwadamilola O. Taiwo,et al.  Non-uniform temperature distribution in Li-ion batteries during discharge – A combined thermal imaging, X-ray micro-tomography and electrochemical impedance approach , 2014 .

[34]  J. Newman,et al.  Porous‐electrode theory with battery applications , 1975 .

[35]  Weixiong Wu,et al.  An experimental study of thermal management system using copper mesh-enhanced composite phase change materials for power battery pack , 2016 .

[36]  Lip Huat Saw,et al.  Performance assessment and optimization of a heat pipe thermal management system for fast charging lithium ion battery packs , 2016 .

[37]  Nima Mirkhani,et al.  Design and Simulation of Air Cooled Battery Thermal Management System Using Thermoelectric for a Hybrid Electric Bus , 2013 .

[38]  G. Tan,et al.  A review of thermoelectric cooling: Materials, modeling and applications , 2014 .

[39]  M. Doyle,et al.  Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell , 1993 .

[40]  Chee Wei Tan,et al.  A review of energy sources and energy management system in electric vehicles , 2013 .

[41]  Vincent Ayel,et al.  Experimental investigation of a pulsating heat pipe for hybrid vehicle applications , 2013 .

[42]  Luisa F. Cabeza,et al.  Review on thermal energy storage with phase change: materials, heat transfer analysis and applications , 2003 .

[43]  Liquan Chen,et al.  Overcharge investigation of lithium-ion polymer batteries , 2006 .

[44]  M. Fowler,et al.  Experimental Investigation of a New Passive Thermal Management System for a Li-Ion Battery Pack Using Phase Change Composite Material , 2017 .

[45]  Yaxing Du,et al.  Optimization of thermal management system for Li-ion batteries using phase change material , 2018 .

[46]  Zhonghao Rao,et al.  Experimental investigation on thermal management of electric vehicle battery with heat pipe , 2013 .

[47]  Jiateng Zhao,et al.  Thermal management of cylindrical power battery module for extending the life of new energy electric vehicles , 2015 .

[48]  Jie Ji,et al.  Theoretical and experimental investigation on a thermoelectric cooling and heating system driven by solar , 2013 .

[49]  Rui Liu,et al.  Numerical investigation of thermal behaviors in lithium-ion battery stack discharge , 2014 .

[50]  M. K. Rathod,et al.  Thermal stability of phase change materials used in latent heat energy storage systems: A review , 2013 .

[51]  K. Pielichowski,et al.  Phase change materials for thermal energy storage , 2014 .

[52]  Yuwen Zhang,et al.  Temperature Uniformity Improvement of an Air-Cooled High-Power Lithium-Ion Battery Using Metal and Nonmetal Foams , 2016 .

[53]  Ibrahim Dincer,et al.  Heat transfer and thermal management with PCMs in a Li-ion battery cell for electric vehicles , 2014 .

[54]  R. K. Akikur,et al.  A review of solar thermal refrigeration and cooling methods , 2013 .

[55]  J. Newman,et al.  Thermal Modeling of Porous Insertion Electrodes , 2003 .

[56]  Lei Wang,et al.  Review on thermal management systems using phase change materials for electronic components, Li-ion batteries and photovoltaic modules , 2014 .

[57]  Charles-Victor Hémery,et al.  Etudes des phénomènes thermiques dans les batteries Li-ion. , 2013 .

[58]  A. Pesaran,et al.  A parametric study on thermal management of an air-cooled lithium-ion battery module for plug-in hybrid electric vehicles , 2013 .

[59]  Thomas J. Richardson,et al.  Visualization of Charge Distribution in a Lithium Battery Electrode , 2010 .

[60]  J. Selman,et al.  Passive control of temperature excursion and uniformity in high-energy Li-ion battery packs at high current and ambient temperature , 2008 .

[61]  Yuwen Zhang,et al.  Thermal management improvement of an air-cooled high-power lithium-ion battery by embedding metal foam , 2015 .

[62]  Christopher Yu Hang Chao,et al.  Thermal management of lithium ion batteries using graphene coated nickel foam saturated with phase change materials , 2018 .

[63]  Daniel H. Doughty,et al.  A General Discussion of Li Ion Battery Safety , 2012 .

[64]  Ruzhu Wang,et al.  Experimental investigation and analysis on a thermoelectric refrigerator driven by solar cells , 2003 .

[65]  Zhonghao Rao,et al.  Investigation of the thermal performance of phase change material/mini-channel coupled battery thermal management system , 2016 .

[66]  Jianlin Yu,et al.  Design optimization of thermoelectric cooling systems for applications in electronic devices , 2012 .

[67]  Gholamreza Karimi,et al.  Experimental study of a cylindrical lithium ion battery thermal management using phase change material composites , 2016 .

[68]  X. Xia,et al.  Experimental investigation of thermal characteristics of lithium ion battery using phase change materials combined with metallic foams and fins , 2016 .

[69]  Gerhardus Swanepoel,et al.  Thermal management of hybrid electrical vehicles using heat pipes , 2001 .

[70]  Ibrahim Dincer,et al.  Review on use of phase change materials in battery thermal management for electric and hybrid electric vehicles , 2016 .

[71]  Philippe Marty,et al.  Experimental performances of a battery thermal management system using a phase change material , 2014 .

[72]  Thomas J. Mackin,et al.  Design and Simulation of Passive Thermal Management System for Lithium-Ion Battery Packs on an Unmanned Ground Vehicle , 2017 .

[73]  Guohua Wang,et al.  Status and development of electric vehicle integrated thermal management from BTM to HVAC , 2015 .

[74]  J. Selman,et al.  Active (air-cooled) vs. passive (phase change material) thermal management of high power lithium-ion packs: Limitation of temperature rise and uniformity of temperature distribution , 2008 .

[75]  Ling Zhang,et al.  Optimum design and experimental study of a thermoelectric ventilator , 2014 .

[76]  Jaeshin Yi,et al.  Modelling the thermal behaviour of a lithium-ion battery during charge , 2011 .

[77]  Zhonghao Rao,et al.  Experimental study of an OHP-cooled thermal management system for electric vehicle power battery , 2014 .

[78]  A. Greco,et al.  A theoretical and computational study of lithium-ion battery thermal management for electric vehicles using heat pipes , 2014 .

[79]  Stefano Alessandrini,et al.  Impact of the electric vehicles on the air pollution from a highway , 2016 .

[80]  R. Chein,et al.  Thermoelectric cooler application in electronic cooling , 2004 .

[81]  N. Brandon,et al.  The effect of thermal gradients on the performance of lithium-ion batteries , 2014 .

[82]  Nasrudin Abd Rahim,et al.  Review of PCM based cooling technologies for buildings , 2012 .

[83]  F. Gascoin,et al.  Spark plasma sintering of fine Mg2Si particles , 2012 .

[84]  Chakib Alaoui,et al.  Solid-State Thermal Management for Lithium-Ion EV Batteries , 2013, IEEE Transactions on Vehicular Technology.

[85]  N. Omar,et al.  Impact of Tab Location on Large Format Lithium-Ion Pouch Cell Based on Fully Coupled Tree-Dimensional Electrochemical-Thermal Modeling , 2014 .

[86]  Rui Zhao,et al.  Optimization of a phase change material based internal cooling system for cylindrical Li-ion battery pack and a hybrid cooling design , 2017 .

[87]  Jianlin Yu,et al.  An analysis on a two-stage cascade thermoelectric cooler for electronics cooling applications. , 2014 .

[88]  Pascal Henry Biwole,et al.  Electric vehicles batteries thermal management systems employing phase change materials , 2018 .

[89]  Guiwen Jiang,et al.  Experiment and simulation of thermal management for a tube-shell Li-ion battery pack with composite phase change material , 2017 .

[90]  Arun S. Mujumdar,et al.  Application of phase change materials in thermal management of electronics , 2007 .

[91]  Guoqing Zhang,et al.  Thermal management investigation for lithium-ion battery module with different phase change materials , 2017 .

[92]  Bernard Desmet,et al.  Experimental investigation on the feasibility of heat pipe cooling for HEV/EV lithium-ion battery , 2014 .

[93]  Luisa F. Cabeza,et al.  Materials used as PCM in thermal energy storage in buildings: A review , 2011 .

[94]  Alexander A. Balandin,et al.  Graphene Thermal Properties: Applications in Thermal Management and Energy Storage , 2014 .

[95]  Greg F. Naterer,et al.  Heat transfer in phase change materials for thermal management of electric vehicle battery modules , 2010 .

[96]  Rangga Aji Pamungkas,et al.  Experimental investigation on performance of lithium-ion battery thermal management system using flat plate loop heat pipe for electric vehicle application , 2016 .

[97]  Zhonghao Rao,et al.  Simulation and experiment of thermal energy management with phase change material for ageing LiFePO4 power battery , 2011 .

[98]  Zia Ud Din,et al.  Phase change material (PCM) storage for free cooling of buildings—A review , 2013 .

[99]  A. Sharma,et al.  Review on thermal energy storage with phase change materials and applications , 2009 .

[100]  Yuwen Zhang,et al.  Thermal management optimization of an air-cooled Li-ion battery module using pin-fin heat sinks for hybrid electric vehicles , 2015 .

[101]  Dinh Vinh Do,et al.  Thermal modeling of a cylindrical LiFePO4/graphite lithium-ion battery , 2010 .

[102]  Yannick Berthou Étude de parois de bâtiments passifs associant un Matériau à Changement de Phase (MCP) et une super isolation transparents , 2011 .

[103]  Deqiu Zou,et al.  Thermal performance enhancement of composite phase change materials (PCM) using graphene and carbon nanotubes as additives for the potential application in lithium-ion power battery , 2018 .

[104]  Andrew Mills,et al.  Simulation of passive thermal management system for lithium-ion battery packs , 2005 .

[105]  Á.G. Miranda,et al.  Feasibility study of a green energy powered thermoelectric chip based air conditioner for electric vehicles , 2013 .

[106]  Ziyad M. Salameh,et al.  A novel thermal management for electric and hybrid vehicles , 2005, IEEE Transactions on Vehicular Technology.

[107]  Upendra S. Rohatgi,et al.  Investigation of Heat Pipe Cooling of LI-Ion Batteries , 2016 .

[108]  X. M. Xu,et al.  Research on the heat dissipation performance of battery pack based on forced air cooling , 2013 .

[109]  Mohammed M. Farid,et al.  The use of PCM panels to improve storage condition of frozen food. , 2010 .

[110]  Ibrahim Dincer,et al.  Thermal Management of Electric Vehicle Battery Systems , 2017 .

[111]  Noel León,et al.  High temperature latent heat thermal energy storage: Phase change materials, design considerations and performance enhancement techniques , 2013 .

[112]  Gholamreza Karimi,et al.  Thermal management analysis of a Li-ion battery cell using phase change material loaded with carbon fibers , 2016 .

[113]  Rui Q. Yang,et al.  Mid-infrared interband cascade lasers at thermoelectric cooler temperatures , 2006 .

[114]  K. Kitoh,et al.  100 Wh Large size Li-ion batteries and safety tests , 1999 .

[115]  Rui Liu,et al.  Numerical and analytical modeling of lithium ion battery thermal behaviors with different cooling designs , 2013 .

[116]  A. Balandin,et al.  Graphene-enhanced hybrid phase change materials for thermal management of Li-ion batteries , 2013, 1305.4140.

[117]  Ibrahim Dincer,et al.  Heat transfer and thermal management of electric vehicle batteries with phase change materials , 2011 .

[118]  Nader Rahbar,et al.  Experimental study of a novel portable solar still by utilizing the heatpipe and thermoelectric module , 2012 .

[119]  Mao-Sung Wu,et al.  Heat dissipation design for lithium-ion batteries , 2002 .

[120]  John Newman,et al.  A General Energy Balance for Battery Systems , 1984 .

[121]  Jiateng Zhao,et al.  Thermal performance of mini-channel liquid cooled cylinder based battery thermal management for cylindrical lithium-ion power battery , 2015 .

[122]  Zhengguo Zhang,et al.  A hybrid thermal management system for lithium ion batteries combining phase change materials with forced-air cooling , 2015 .

[123]  Saffa Riffat,et al.  Thermoelectrics: a review of present and potential applications , 2003 .

[124]  A. Majumdar Thermoelectricity in Semiconductor Nanostructures , 2004, Science.

[125]  Fariborz Haghighat,et al.  Thermal energy storage with phase change material—A state-of-the art review , 2014 .

[126]  Bin Guo,et al.  Numerical Analysis and Design of Thermal Management System for Lithium Ion Battery Pack Using Thermoelectric Coolers , 2014 .

[127]  Weixiong Wu,et al.  Thermal management optimization of a prismatic battery with shape-stabilized phase change material , 2018, International Journal of Heat and Mass Transfer.

[128]  Farah Souayfane,et al.  Phase change materials (PCM) for cooling applications in buildings: A review , 2016 .

[129]  Karthik Panchabikesan,et al.  Review on phase change material based free cooling of buildings—The way toward sustainability , 2015 .

[130]  Dan Zhou,et al.  Review on thermal energy storage with phase change materials (PCMs) in building applications , 2012 .

[131]  Guofeng Chang,et al.  Experiment and simulation of a LiFePO4 battery pack with a passive thermal management system using composite phase change material and graphite sheets , 2015 .

[132]  Yoshiyasu Saito,et al.  Thermal behaviors of lithium-ion batteries during high-rate pulse cycling , 2005 .

[133]  Rui Zhao,et al.  A review of thermal performance improving methods of lithium ion battery: Electrode modification and thermal management system , 2015 .

[134]  Bernard Bäker,et al.  Current density and state of charge inhomogeneities in Li-ion battery cells with LiFePO4 as cathode material due to temperature gradients , 2011 .

[135]  Robert F. Nelson,et al.  Power requirements for batteries in hybrid electric vehicles , 2000 .

[136]  D. Astrain,et al.  Development of a thermoelectric refrigerator with two-phase thermosyphons and capillary lift , 2009 .

[137]  Hassan Fathabadi,et al.  High thermal performance lithium-ion battery pack including hybrid active–passive thermal management system for using in hybrid/electric vehicles , 2014 .

[138]  Akiyoshi Kuroda,et al.  Experimental and numerical study on phase change material (PCM) for thermal management of mobile devices , 2016 .

[139]  Lin Zhu,et al.  Analysis on optimal heat exchanger size of thermoelectric cooler for electronic cooling applications , 2013 .

[140]  U. Kim,et al.  Modeling for the scale-up of a lithium-ion polymer battery , 2009 .

[141]  Said Al-Hallaj,et al.  An alternative cooling system to enhance the safety of Li-ion battery packs , 2009 .

[142]  Bernard Sahut,et al.  Experimental investigation on heat pipe cooling for Hybrid Electric Vehicle and Electric Vehicle lithium-ion battery , 2014 .

[143]  K. Reddy,et al.  Performance enhancement of a Building-Integrated Concentrating Photovoltaic system using phase change material , 2016 .

[144]  Guoqing Zhang,et al.  Experimental study on a novel battery thermal management technology based on low density polyethylene-enhanced composite phase change materials coupled with low fins , 2016 .

[145]  J. Selman,et al.  A novel thermal management system for electric vehicle batteries using phase-change material , 2000 .

[146]  A. Babapoor,et al.  Thermal management of a Li-ion battery using carbon fiber-PCM composites , 2015 .

[147]  Wan Ramli Wan Daud,et al.  Challenges and future developments in proton exchange membrane fuel cells , 2006 .

[148]  Zhonghao Rao,et al.  A review of power battery thermal energy management , 2011 .

[149]  Guoqing Zhang,et al.  A novel nanosilica-enhanced phase change material with anti-leakage and anti-volume-changes properties for battery thermal management , 2018 .

[150]  Yanping Yuan,et al.  Non-steady experimental investigation on an integrated thermal management system for power battery with phase change materials , 2017 .

[151]  J. Ji,et al.  Recent development and application of thermoelectric generator and cooler , 2015 .

[152]  Søren Knudsen Kær,et al.  Towards an Ultimate Battery Thermal Management System: A Review , 2017 .

[153]  Lei Han,et al.  Study on a cooling system based on thermoelectric cooler for thermal management of high-power LEDs , 2011, Microelectron. Reliab..

[154]  Huanzhi Zhang,et al.  Silica encapsulation of n-octadecane via sol-gel process: a novel microencapsulated phase-change material with enhanced thermal conductivity and performance. , 2010, Journal of colloid and interface science.

[155]  James Marco,et al.  A new approach to the internal thermal management of cylindrical battery cells for automotive applications , 2017 .

[156]  Hyeung-Sik Choi,et al.  Development of a temperature-controlled car-seat system utilizing thermoelectric device , 2007 .

[157]  Chakib Alaoui,et al.  Modeling and simulation of a Thermal Management System for Electric Vehicles , 2003, IECON'03. 29th Annual Conference of the IEEE Industrial Electronics Society (IEEE Cat. No.03CH37468).

[158]  Zhengguo Zhang,et al.  Experimental and numerical investigation of the application of phase change materials in a simulative power batteries thermal management system , 2014 .

[159]  Yanlai Zhang,et al.  Thermal Management with Phase Change Material for a Power Battery under Cold Temperatures , 2014 .

[160]  D. Astrain,et al.  Computational model for refrigerators based on Peltier effect application , 2005 .

[161]  Zhang Chuanwei,et al.  Study on a Battery Thermal Management System Based on a Thermoelectric Effect , 2018 .

[162]  U. Kim,et al.  Effect of electrode configuration on the thermal behavior of a lithium-polymer battery , 2008 .

[163]  Subrata Mondal,et al.  Phase change materials for smart textiles – An overview , 2008 .

[164]  Bin Wu,et al.  Thermal Design for the Pouch-Type Large-Format Lithium-Ion Batteries I. Thermo-Electrical Modeling and Origins of Temperature Non-Uniformity , 2015 .

[165]  J. Selman,et al.  Thermal management of Li-ion battery with phase change material for electric scooters: experimental validation , 2005 .

[166]  Omar Abdelaziz,et al.  Thermal charging performance of enhanced phase change material composites for thermal battery design , 2018 .

[167]  Ahmad Pesaran,et al.  Thermal/electrical modeling for abuse‐tolerant design of lithium ion modules , 2010 .

[168]  Juhua Huang,et al.  Thermal optimization of composite phase change material/expanded graphite for Li-ion battery thermal management , 2016 .

[169]  Arun S. Mujumdar,et al.  Thermal–electrochemical model for passive thermal management of a spiral-wound lithium-ion battery , 2012 .

[170]  Gregory J. Offer,et al.  Surface Cooling Causes Accelerated Degradation Compared to Tab Cooling for Lithium-Ion Pouch Cells , 2016 .

[171]  Peter Miller,et al.  Automotive Lithium-Ion Batteries , 2015 .

[172]  Ibrahim Dincer,et al.  Modeling of passive thermal management for electric vehicle battery packs with PCM between cells , 2014 .

[173]  Yu Kuahai,et al.  Thermal analysis and two-directional air flow thermal management for lithium-ion battery pack , 2014 .

[174]  M. Farid,et al.  Improving thermal performance of freezers using phase change materials. , 2012 .

[175]  Guojun Li,et al.  Investigation of the thermal performance of axial-flow air cooling for the lithium-ion battery pack , 2016 .

[176]  Zhonghao Rao,et al.  An experimental study on thermal management of lithium ion battery packs using an improved passive method , 2018 .

[177]  R. Kizilel,et al.  Passive thermal management using phase change material (PCM) for EV and HEV Li- ion batteries , 2005, 2005 IEEE Vehicle Power and Propulsion Conference.

[178]  Zhonghao Rao,et al.  Investigation of phase change material based battery thermal management at cold temperature using lattice Boltzmann method , 2017 .