UNCERTAINTY QUANTIFICATION IN COMPUTATIONAL PREDICTIVE MODELS FOR FLUID DYNAMICS USING A WORKFLOW MANAGEMENT ENGINE

Computational simulation of complex engineered systems requires intensive computation and a significant amount of data management. Today, this management is often carried out on a case-by-case basis and requires great effort to track it. This is due to the complexity of controlling a large amount of data flowing along a chain of simulations. Moreover, many times there is a need to explore parameter variability for the same set of data. On a case-by-case basis, there is no register of data involved in the simulation, making this process prone to errors. In addition, if the user wants to analyze the behavior of a simulation sample, then he/she must wait until the end of the whole simulation. In this context, techniques and methodologies of scientific workflows can improve the management of simulations. Parameter variability can be put in the general context of uncertainty quantification (UQ), which provides a rational perspective for analysts and decision makers. The objective of this work is to use scientific workflows to provide a systematic approach in: (i) modeling UQ numerical experiments as scientific workflows, (ii) offering query tools to evaluate UQ processes at runtime, (iii) managing the UQ analysis, and (iv) managing UQ in parallel executions. When using scientific workflow engines, one can collect data in a transparent manner, allowing execution steering, the postassessment of results, and providing the information for reexecuting the experiment, thereby ensuring reproducibility, an essential characteristic in a scientific or engineering computational experiment.

[1]  Kees M. van Hee,et al.  Workflow Management: Models, Methods, and Systems , 2002, Cooperative information systems.

[2]  George E. Karniadakis,et al.  Time-dependent generalized polynomial chaos , 2010, J. Comput. Phys..

[3]  Ewa Deelman,et al.  Pegasus: Mapping Large-Scale Workflows to Distributed Resources , 2007, Workflows for e-Science, Scientific Workflows for Grids.

[4]  Arie Shoshani,et al.  Scientific Data Management - Challenges, Technology, and Deployment , 2009, Scientific Data Management.

[5]  Dongbin Xiu,et al.  High-Order Collocation Methods for Differential Equations with Random Inputs , 2005, SIAM J. Sci. Comput..

[6]  Edward Walker,et al.  Challenges in executing large parameter sweep studies across widely distributed computing environments , 2007, CLADE '07.

[7]  Alvaro L. G. A. Coutinho,et al.  Edge‐based finite element implementation of the residual‐based variational multiscale method , 2009 .

[8]  Jianxing Yu,et al.  A New Wake Oscillator Model for Predicting Vortex Induced Vibration of a Circular Cylinder , 2010 .

[9]  Marta Mattoso,et al.  SciCumulus: A Lightweight Cloud Middleware to Explore Many Task Computing Paradigm in Scientific Workflows , 2010, 2010 IEEE 3rd International Conference on Cloud Computing.

[10]  Michael Griebel,et al.  Adaptive sparse grid multilevel methods for elliptic PDEs based on finite differences , 1998, Computing.

[11]  Xiang Ma,et al.  An adaptive hierarchical sparse grid collocation algorithm for the solution of stochastic differential equations , 2009, J. Comput. Phys..

[12]  Geoffrey C. Fox,et al.  MPJ: MPI-like message passing for Java , 2000, Concurr. Pract. Exp..

[13]  Miron Livny,et al.  Condor and the Grid , 2003 .

[14]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[15]  Fabio Nobile,et al.  A Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..

[16]  Gregor von Laszewski,et al.  Swift: Fast, Reliable, Loosely Coupled Parallel Computation , 2007, 2007 IEEE Congress on Services (Services 2007).

[17]  Roland Bouffanais,et al.  Large-eddy simulation of the flow in a lid-driven cubical cavity , 2007, 0709.0222.

[18]  Alvaro L. G. A. Coutinho,et al.  Stabilized edge‐based finite element computation of gravity currents in lock‐exchange configurations , 2008 .

[19]  Sai Hung Cheung,et al.  Bayesian uncertainty analysis with applications to turbulence modeling , 2011, Reliab. Eng. Syst. Saf..

[20]  Ian J. Taylor,et al.  Workflows and e-Science: An overview of workflow system features and capabilities , 2009, Future Gener. Comput. Syst..

[21]  Jie Shen,et al.  An unconditionally stable rotational velocity-correction scheme for incompressible flows , 2010, J. Comput. Phys..

[22]  Marta Mattoso,et al.  An algebraic approach for data-centric scientific workflows , 2011, Proc. VLDB Endow..

[23]  Isaac Elishakoff,et al.  Notes on Philosophy of the Monte Carlo Method , 2003 .

[24]  Haym Benaroya,et al.  An overview of modeling and experiments of vortex-induced vibration of circular cylinders , 2005 .

[25]  Yong Zhao,et al.  Falkon: a Fast and Light-weight tasK executiON framework , 2007, Proceedings of the 2007 ACM/IEEE Conference on Supercomputing (SC '07).

[26]  M. Kronbichler,et al.  An algebraic variational multiscale-multigrid method for large eddy simulation of turbulent flow , 2010 .

[27]  E. de Langre,et al.  Coupling of Structure and Wake Oscillators in Vortex-Induced Vibrations , 2004 .

[28]  Cláudio T. Silva,et al.  VisTrails: visualization meets data management , 2006, SIGMOD Conference.

[29]  Michael S. Eldred,et al.  DAKOTA : a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis. Version 5.0, user's reference manual. , 2010 .

[30]  Raúl Tempone,et al.  Galerkin Finite Element Approximations of Stochastic Elliptic Partial Differential Equations , 2004, SIAM J. Numer. Anal..

[31]  B. Øksendal Stochastic Differential Equations , 1985 .

[32]  Marta Mattoso,et al.  Towards supporting the life cycle of large scale scientific experiments , 2010, Int. J. Bus. Process. Integr. Manag..

[33]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[34]  Tayfan E. Tezduyar,et al.  Stabilized Finite Element Formulations for Incompressible Flow Computations , 1991 .

[35]  Johan Meyers,et al.  Sensitivity analysis of large-eddy simulations to subgrid-scale-model parametric uncertainty using polynomial chaos , 2007, Journal of Fluid Mechanics.

[36]  Alvaro L. G. A. Coutinho,et al.  Stabilized edge‐based finite element simulation of free‐surface flows , 2007 .

[37]  Michael S. Eldred,et al.  DAKOTA , A Multilevel Parallel Object-Oriented Framework for Design Optimization , Parameter Estimation , Uncertainty Quantification , and Sensitivity Analysis Version 4 . 0 User ’ s Manual , 2006 .

[38]  B. Øksendal Stochastic differential equations : an introduction with applications , 1987 .

[39]  D. Xiu Fast numerical methods for stochastic computations: A review , 2009 .