UNCERTAINTY QUANTIFICATION IN COMPUTATIONAL PREDICTIVE MODELS FOR FLUID DYNAMICS USING A WORKFLOW MANAGEMENT ENGINE
暂无分享,去创建一个
Marta Mattoso | Alvaro L. G. A. Coutinho | Eduardo S. Ogasawara | Daniel de Oliveira | Renato N. Elias | Jonas Dias | Fernando A. Rochinha | Eduardo Ogasawara | Gabriel M. Guerra | Jonas Dias | M. Mattoso | A. Coutinho | F. Rochinha | R. Elias | G. Guerra
[1] Kees M. van Hee,et al. Workflow Management: Models, Methods, and Systems , 2002, Cooperative information systems.
[2] George E. Karniadakis,et al. Time-dependent generalized polynomial chaos , 2010, J. Comput. Phys..
[3] Ewa Deelman,et al. Pegasus: Mapping Large-Scale Workflows to Distributed Resources , 2007, Workflows for e-Science, Scientific Workflows for Grids.
[4] Arie Shoshani,et al. Scientific Data Management - Challenges, Technology, and Deployment , 2009, Scientific Data Management.
[5] Dongbin Xiu,et al. High-Order Collocation Methods for Differential Equations with Random Inputs , 2005, SIAM J. Sci. Comput..
[6] Edward Walker,et al. Challenges in executing large parameter sweep studies across widely distributed computing environments , 2007, CLADE '07.
[7] Alvaro L. G. A. Coutinho,et al. Edge‐based finite element implementation of the residual‐based variational multiscale method , 2009 .
[8] Jianxing Yu,et al. A New Wake Oscillator Model for Predicting Vortex Induced Vibration of a Circular Cylinder , 2010 .
[9] Marta Mattoso,et al. SciCumulus: A Lightweight Cloud Middleware to Explore Many Task Computing Paradigm in Scientific Workflows , 2010, 2010 IEEE 3rd International Conference on Cloud Computing.
[10] Michael Griebel,et al. Adaptive sparse grid multilevel methods for elliptic PDEs based on finite differences , 1998, Computing.
[11] Xiang Ma,et al. An adaptive hierarchical sparse grid collocation algorithm for the solution of stochastic differential equations , 2009, J. Comput. Phys..
[12] Geoffrey C. Fox,et al. MPJ: MPI-like message passing for Java , 2000, Concurr. Pract. Exp..
[13] Miron Livny,et al. Condor and the Grid , 2003 .
[14] R. Ghanem,et al. Stochastic Finite Elements: A Spectral Approach , 1990 .
[15] Fabio Nobile,et al. A Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..
[16] Gregor von Laszewski,et al. Swift: Fast, Reliable, Loosely Coupled Parallel Computation , 2007, 2007 IEEE Congress on Services (Services 2007).
[17] Roland Bouffanais,et al. Large-eddy simulation of the flow in a lid-driven cubical cavity , 2007, 0709.0222.
[18] Alvaro L. G. A. Coutinho,et al. Stabilized edge‐based finite element computation of gravity currents in lock‐exchange configurations , 2008 .
[19] Sai Hung Cheung,et al. Bayesian uncertainty analysis with applications to turbulence modeling , 2011, Reliab. Eng. Syst. Saf..
[20] Ian J. Taylor,et al. Workflows and e-Science: An overview of workflow system features and capabilities , 2009, Future Gener. Comput. Syst..
[21] Jie Shen,et al. An unconditionally stable rotational velocity-correction scheme for incompressible flows , 2010, J. Comput. Phys..
[22] Marta Mattoso,et al. An algebraic approach for data-centric scientific workflows , 2011, Proc. VLDB Endow..
[23] Isaac Elishakoff,et al. Notes on Philosophy of the Monte Carlo Method , 2003 .
[24] Haym Benaroya,et al. An overview of modeling and experiments of vortex-induced vibration of circular cylinders , 2005 .
[25] Yong Zhao,et al. Falkon: a Fast and Light-weight tasK executiON framework , 2007, Proceedings of the 2007 ACM/IEEE Conference on Supercomputing (SC '07).
[26] M. Kronbichler,et al. An algebraic variational multiscale-multigrid method for large eddy simulation of turbulent flow , 2010 .
[27] E. de Langre,et al. Coupling of Structure and Wake Oscillators in Vortex-Induced Vibrations , 2004 .
[28] Cláudio T. Silva,et al. VisTrails: visualization meets data management , 2006, SIGMOD Conference.
[29] Michael S. Eldred,et al. DAKOTA : a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis. Version 5.0, user's reference manual. , 2010 .
[30] Raúl Tempone,et al. Galerkin Finite Element Approximations of Stochastic Elliptic Partial Differential Equations , 2004, SIAM J. Numer. Anal..
[31] B. Øksendal. Stochastic Differential Equations , 1985 .
[32] Marta Mattoso,et al. Towards supporting the life cycle of large scale scientific experiments , 2010, Int. J. Bus. Process. Integr. Manag..
[33] Dongbin Xiu,et al. The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..
[34] Tayfan E. Tezduyar,et al. Stabilized Finite Element Formulations for Incompressible Flow Computations , 1991 .
[35] Johan Meyers,et al. Sensitivity analysis of large-eddy simulations to subgrid-scale-model parametric uncertainty using polynomial chaos , 2007, Journal of Fluid Mechanics.
[36] Alvaro L. G. A. Coutinho,et al. Stabilized edge‐based finite element simulation of free‐surface flows , 2007 .
[37] Michael S. Eldred,et al. DAKOTA , A Multilevel Parallel Object-Oriented Framework for Design Optimization , Parameter Estimation , Uncertainty Quantification , and Sensitivity Analysis Version 4 . 0 User ’ s Manual , 2006 .
[38] B. Øksendal. Stochastic differential equations : an introduction with applications , 1987 .
[39] D. Xiu. Fast numerical methods for stochastic computations: A review , 2009 .