Automated classification of debris-covered glaciers combining optical, SAR and topographic data in an object-based environment

[1]  R. Armstrong,et al.  The Physics of Glaciers , 1981 .

[2]  Y. Ageta,et al.  Estimation of Mass Balance Components of a Summer-Accumulation Type Glacier in the Nepal Himalaya , 1984 .

[3]  David J. A. Evans,et al.  Glaciers and Glaciation , 1997 .

[4]  L. Owen,et al.  The role of the Indian summer monsoon and the mid-latitude westerlies in Himalayan glaciation: review and speculative discussion , 1998, Journal of the Geological Society.

[5]  J. Townshend,et al.  Beware of per-pixel characterization of land cover , 2000 .

[6]  John M. Reynolds,et al.  An overview of glacial hazards in the Himalayas , 2000 .

[7]  Rijan Bhakta Kayastha,et al.  Characteristics of ablation and heat balance in debris-free and debris-covered areas on Khumbu Glacier, Nepal Himalayas, in the pre-monsoon season , 2000 .

[8]  Josef Strobl,et al.  What’s wrong with pixels? Some recent developments interfacing remote sensing and GIS , 2001 .

[9]  T. Albert,et al.  Evaluation of Remote Sensing Techniques for Ice-Area Classification Applied to the Tropical Quelccaya Ice Cap, Peru , 2002 .

[10]  Roberto Ranzi,et al.  Use of multispectral ASTER images for mapping debris-covered glaciers within the GLIMS project , 2004, IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium.

[11]  U. Benz,et al.  Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information , 2004 .

[12]  Andreas Kääb,et al.  Combining satellite multispectral image data and a digital elevation model for mapping debris-covered glaciers , 2004 .

[13]  F. Catani,et al.  On the application of SAR interferometry to geomorphological studies: estimation of landform attributes and mass movements , 2005 .

[14]  Lewis A. Owen,et al.  Equilibrium-line altitudes of the Last Glacial Maximum for the Himalaya and Tibet: an assessment and evaluation of results , 2005 .

[15]  A. Kääb Combination of SRTM3 and repeat ASTER data for deriving alpine glacier flow velocities in the Bhutan Himalaya , 2005 .

[16]  Kurt L. Feigl,et al.  Surface motion of mountain glaciers derived from satellite optical imagery , 2005 .

[17]  Zhang Xiangmin,et al.  Comparison of pixel‐based and object‐oriented image classification approaches—a case study in a coal fire area, Wuda, Inner Mongolia, China , 2006 .

[18]  H. G. Rees,et al.  Regional differences in response of flow in glacier‐fed Himalayan rivers to climatic warming , 2006 .

[19]  B. P. Rathore,et al.  Recession of samudra tapu glacier, chandra river basin, Himachal Pradesh , 2006 .

[20]  Manfred F. Buchroithner,et al.  Automated delineation of debris-covered glaciers based on ASTER data , 2007 .

[21]  P. Chevallier,et al.  Remote sensing estimates of glacier mass balances in the Himachal Pradesh (Western Himalaya, India) , 2007 .

[22]  R. Barry,et al.  Optical Remote Sensing of Glacier Characteristics: A Review with Focus on the Himalaya , 2008, Sensors.

[23]  Stefan Lang,et al.  Object-based image analysis for remote sensing applications: modeling reality – dealing with complexity , 2008 .

[24]  Manfred F. Buchroithner,et al.  Identification of glacier motion and potentially dangerous glacial lakes in the Mt. Everest region/Nepal using spaceborne imagery , 2008 .

[25]  T. Bolch,et al.  Planimetric and volumetric glacier changes in the Khumbu Himal, Nepal, since 1962 using Corona, Landsat TM and ASTER data , 2008 .

[26]  Frank Paul,et al.  A new glacier inventory for the Svartisen region, Norway, from Landsat ETM+ data: challenges and change assessment , 2009, Journal of Glaciology.

[27]  A. Luckman,et al.  Quantification of Everest region glacier velocities between 1992 and 2002, using satellite radar interferometry and feature tracking , 2009, Journal of Glaciology.

[28]  Siri Jodha Singh Khalsa,et al.  Challenges and recommendations in mapping of glacier parameters from space: results of the 2008 Global Land Ice Measurements from Space (GLIMS) workshop, Boulder, Colorado, USA , 2009, Annals of Glaciology.

[29]  Rajat Gupta,et al.  ASTER ratio indices for supraglacial terrain mapping , 2009 .

[30]  N. Reznichenko,et al.  Effects of debris on ice-surface melting rates: an experimental study , 2010, Journal of Glaciology.

[31]  Aparna Shukla,et al.  Synergistic approach for mapping debris-covered glaciers using optical–thermal remote sensing data with inputs from geomorphometric parameters , 2010 .

[32]  Thomas Blaschke,et al.  Object based image analysis for remote sensing , 2010 .

[33]  Franz J. Meyer,et al.  Using L-band SAR coherence to delineate glacier extent , 2010 .

[34]  Brian Menounos,et al.  Contribution of Alaskan glaciers to sea-level rise derived from satellite imagery , 2010 .

[35]  M. Bierkens,et al.  Climate Change Will Affect the Asian Water Towers , 2010, Science.

[36]  Tobias Bolch,et al.  Mapping of debris-covered glaciers in the Garhwal Himalayas using ASTER DEMs and thermal data , 2011 .

[37]  Patricia Gober,et al.  Per-pixel vs. object-based classification of urban land cover extraction using high spatial resolution imagery , 2011, Remote Sensing of Environment.

[38]  Samjwal Ratna Bajracharya,et al.  The Status of Glaciers in the Hindu Kush-Himalayan Region , 2011 .

[39]  Michael J. Oimoen,et al.  ASTER Global Digital Elevation Model Version 2 - summary of validation results , 2011 .

[40]  A. Shrestha,et al.  Glacial Lakes and Glacial Lake Outburst Floods in Nepal , 2011 .

[41]  Yong Zhang,et al.  Distribution of debris thickness and its effect on ice melt at Hailuogou glacier, southeastern Tibetan Plateau, using in situ surveys and ASTER imagery , 2011, Journal of Glaciology.

[42]  Xin Wang,et al.  Applying SAR interferometric coherence to outline debris-covered glacier , 2011, 2011 19th International Conference on Geoinformatics.

[43]  B. Bookhagen,et al.  Spatially variable response of Himalayan glaciers to climate change affected by debris cover , 2011 .

[44]  Hossein Ghalkhani,et al.  Elevation changes of Alamkouh glacier in Iran since 1955, based on remote sensing data , 2012, Int. J. Appl. Earth Obs. Geoinformation.

[45]  T. Bolch,et al.  The State and Fate of Himalayan Glaciers , 2012, Science.

[46]  Tobias Bolch,et al.  Response of debris-covered glaciers in the Mount Everest region to recent warming, and implications for outburst flood hazards , 2012 .

[47]  F. Paul,et al.  Compilation of a glacier inventory for the western Himalayas from satellite data: methods, challenges, and results , 2012 .

[48]  A. Kääb,et al.  Geochemical characterization of supraglacial debris via in situ and optical remote sensing methods: a case study in Khumbu Himalaya, Nepal , 2012 .

[49]  Alexander Brenning,et al.  Thermal remote sensing of ice-debris landforms using ASTER: an example from the Chilean Andes , 2012 .

[50]  Mark W. Williams,et al.  Decision Tree and Texture Analysis for Mapping Debris-Covered Glaciers in the Kangchenjunga Area, Eastern Himalaya , 2012, Remote. Sens..

[51]  Eric J. Fielding,et al.  Recent changes in the snout position and surface velocity of Gangotri glacier observed from space , 2013 .

[52]  Andreas Kääb,et al.  Decadal changes from a multi-temporal glacier inventory of Svalbard , 2013 .

[53]  Ajai,et al.  Glacier Inventory in Indus, Ganga and Brahmaputra Basins of the Himalaya , 2013 .

[54]  Tazio Strozzi,et al.  Interpretation of Aerial Photographs and Satellite SAR Interferometry for the Inventory of Landslides , 2013, Remote. Sens..

[55]  Adina Racoviteanu,et al.  Evaluation of an ice ablation model to estimate the contribution of melting glacier ice to annual discharge in the Nepal Himalaya , 2013 .

[56]  Y. Arnaud,et al.  Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999–2011 , 2013 .

[57]  Solveig H. Winsvold,et al.  On the accuracy of glacier outlines derived from remote-sensing data , 2013, Annals of Glaciology.

[58]  Sergey V. Samsonov,et al.  Mapping and monitoring geological hazards using optical, LiDAR, and synthetic aperture RADAR image data , 2014, Natural Hazards.

[59]  C. Hirt,et al.  Comparison of free high resolution digital elevation data sets (ASTER GDEM2, SRTM v2.1/v4.1) and validation against accurate heights from the Australian National Gravity Database , 2014 .

[60]  A. Shrestha,et al.  Estimation of discharge from Langtang River basin, Rasuwa, Nepal, using a glacio-hydrological model , 2014, Annals of Glaciology.

[61]  Claudia Notarnicola,et al.  A Comparison of Pixel- and Object-Based Glacier Classification With Optical Satellite Images , 2014, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[62]  Pawan Kumar Joshi,et al.  Mapping debris-covered glaciers and identifying factors affecting the accuracy , 2014 .

[63]  Zhen Li,et al.  Recognition of supraglacial debris in the Tianshan Mountains on polarimetric SAR images , 2014 .

[64]  Jeffrey S. Kargel,et al.  Glacier Mapping and Monitoring Using Multispectral Data , 2014 .

[65]  Yongjian Ding,et al.  Glacier changes in the Koshi River basin, central Himalaya, from 1976 to 2009, derived from remote-sensing imagery , 2014, Annals of Glaciology.

[66]  T. Bolch,et al.  The Randolph Glacier inventory: a globally complete inventory of glaciers , 2014 .

[67]  Bagher Shirmohammadi,et al.  Producing a landslide inventory map using pixel-based and object-oriented approaches optimized by Taguchi method , 2014 .

[68]  O. Csillik,et al.  Automated parameterisation for multi-scale image segmentation on multiple layers , 2014, ISPRS journal of photogrammetry and remote sensing : official publication of the International Society for Photogrammetry and Remote Sensing.

[69]  Shi-yin Liu,et al.  Impact of varying debris cover thickness on ablation: a case study for Koxkar Glacier in the Tien Shan , 2014 .

[70]  Thomas Blaschke,et al.  Geographic Object-Based Image Analysis – Towards a new paradigm , 2014, ISPRS journal of photogrammetry and remote sensing : official publication of the International Society for Photogrammetry and Remote Sensing.

[71]  Koji Fujita,et al.  The GAMDAM glacier inventory: a quality-controlled inventory of Asian glaciers , 2014 .

[72]  Jean-Michel Friedt,et al.  Where does a glacier end? GPR measurements to identify the limits between valley slopes and actual glacier body. Application to the Austre Lovénbreen, Spitsbergen , 2014, Int. J. Appl. Earth Obs. Geoinformation.

[73]  A. Gillespie,et al.  Theoretical Foundations of Remote Sensing for Glacier Assessment and Mapping , 2014 .

[74]  Mahendra Singh Nathawat,et al.  Mapping of debris-covered glaciers in parts of the Greater Himalaya Range, Ladakh, western Himalaya, using remote sensing and GIS , 2014 .

[75]  S. Bajracharya,et al.  The status and decadal change of glaciers in Bhutan from the 1980s to 2010 based on satellite data , 2014, Annals of Glaciology.

[76]  M. Arora,et al.  WITHDRAWN: Comparison of Maximum Likelihood and Knowledge-Based Classifications of Debris Cover of Glaciers Using Aster Optical-Thermal Imagery , 2014 .

[77]  S. M. Jong,et al.  High-resolution monitoring of Himalayan glacier dynamics using unmanned aerial vehicles , 2014 .

[78]  Clemens Eisank,et al.  An object-based approach for semi-automated landslide change detection and attribution of changes to landslide classes in northern Taiwan , 2015, Earth Science Informatics.

[79]  T. R. Lauknes,et al.  The glaciers climate change initiative: Methods for creating glacier area, elevation change and velocity products , 2015 .

[80]  R. Bhambri,et al.  Four decades of glacier mass balance observations in the Indian Himalaya , 2016, Regional Environmental Change.

[81]  Samjwal Ratna Bajracharya,et al.  The glaciers of the Hindu Kush Himalayas: current status and observed changes from the 1980s to 2010 , 2015 .

[82]  R. Bhambri,et al.  Influence of debris cover and altitude on glacier surface melting: a case study on Dokriani Glacier, central Himalaya, India , 2015, Annals of Glaciology.

[83]  Ryutaro Tateishi,et al.  A new band ratio technique for mapping debris-covered glaciers using Landsat imagery and a digital elevation model , 2015 .