Electrodiffusion model of synaptic potentials in dendritic spines

When modeling electric current flow in neurons and excitable cells, traditional cable theory ignores electrodiffusion (i.e. the interaction between electric fields and ionic diffusion) as it assumes that concentration changes associated with ionic currents are negligible. This assumption, while true for large neuronal compartments, fails when applied to femto-liter size compartments such as dendritic spines - small protrusions that form the main site of synaptic inputs in the brain. Here, we use the Poisson (P) and Nernst-Planck (NP) equations, which relate electric field to charge and couple Fick’s law of diffusion to the electric field, to model ion concentration dynamics in dendritic spines. We use experimentally measured voltage transients from spines with nanoelectrodes to explore these dynamics with realistic parameters. We find that (i) passive diffusion and electrodiffusion jointly affect the kinetics of spine excitatory post-synaptic potentials (EPSPs); (ii) spine geometry plays a key role in shaping EPSPs; and, (iii) the spine-neck resistance dynamically decreases during EPSPs, leading to short-term synaptic facilitation. Our formulation can be easily adopted to model ionic biophysics in a variety of nanoscale bio-compartments.

[1]  C. Koch,et al.  Methods in Neuronal Modeling: From Ions to Networks , 1998 .

[2]  Z. Schuss,et al.  The narrow escape problem for diffusion in cellular microdomains , 2007, Proceedings of the National Academy of Sciences.

[3]  J. Jack,et al.  Electric current flow in excitable cells , 1975 .

[4]  Leslie M Loew,et al.  EPSPs Measured in Proximal Dendritic Spines of Cortical Pyramidal Neurons123 , 2016, eNeuro.

[5]  K. Staley,et al.  Novel determinants of the neuronal Cl− concentration , 2014, The Journal of physiology.

[6]  B. Nadler,et al.  Derivation of Poisson and Nernst-Planck equations in a bath and channel from a molecular model. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[7]  D W Tank,et al.  Direct Measurement of Coupling Between Dendritic Spines and Shafts , 1996, Science.

[8]  B. Sabatini,et al.  SK channels and NMDA receptors form a Ca2+-mediated feedback loop in dendritic spines , 2005, Nature Neuroscience.

[9]  Yi Zuo,et al.  Spine Neck Plasticity Controls Postsynaptic Calcium Signals through Electrical Compartmentalization , 2008, The Journal of Neuroscience.

[10]  Bernardo L Sabatini,et al.  Neuronal Activity Regulates Diffusion Across the Neck of Dendritic Spines , 2005, Science.

[11]  Sergiy Sylantyev,et al.  Electric Fields Due to Synaptic Currents Sharpen Excitatory Transmission , 2008, Science.

[12]  W. N. Ross,et al.  Sodium Dynamics in Pyramidal Neuron Dendritic Spines: Synaptically Evoked Entry Predominantly through AMPA Receptors and Removal by Diffusion , 2017, The Journal of Neuroscience.

[13]  T. Poggio,et al.  A theoretical analysis of electrical properties of spines , 1983, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[14]  Kenneth R. Tovar,et al.  Ligand-Gated Ion Channels , 2012 .

[15]  Rafael Yuste,et al.  Book Review: On the Function of Dendritic Spines , 2001 .

[16]  HighWire Press The journal of neuroscience : the official journal of the Society for Neuroscience. , 1981 .

[17]  M. Kushmerick,et al.  Ionic Mobility in Muscle Cells , 1969, Science.

[18]  P Hänggi,et al.  Rectification in synthetic conical nanopores: a one-dimensional Poisson-Nernst-Planck model. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  Rafael Yuste,et al.  Ultrastructure of Dendritic Spines: Correlation Between Synaptic and Spine Morphologies , 2007, Front. Neurosci..

[20]  Z. Schuss,et al.  Electrostatics of non-neutral biological microdomains , 2016, Scientific Reports.

[21]  Nelson Spruston,et al.  Dendritic integration: 60 years of progress , 2015, Nature Neuroscience.

[22]  Idan Segev,et al.  Excitable dendrites and spines: earlier theoretical insights elucidate recent direct observations , 1998, Trends in Neurosciences.

[23]  S. B. Kater,et al.  Dendritic spines: cellular specializations imparting both stability and flexibility to synaptic function. , 1994, Annual review of neuroscience.

[24]  Dmitri A. Rusakov,et al.  Electrodiffusion phenomena in neuroscience: a neglected companion , 2017, Nature Reviews Neuroscience.

[25]  R. Wurtz,et al.  Brain circuits for the internal monitoring of movements. , 2008, Annual review of neuroscience.

[26]  Roberto Araya,et al.  The spine neck filters membrane potentials , 2006, Proceedings of the National Academy of Sciences.

[27]  Nelson Spruston,et al.  Synaptic amplification by dendritic spines enhances input cooperativity , 2012, Nature.

[28]  J. Lear,et al.  Permeation through an open channel: Poisson-Nernst-Planck theory of a synthetic ionic channel. , 1997, Biophysical journal.

[29]  Rafael Yuste,et al.  Attenuation of Synaptic Potentials in Dendritic Spines. , 2017, Cell reports.

[30]  Kshitij Auluck,et al.  Programmable ion-sensitive transistor interfaces. III. Design considerations, signal generation, and sensitivity enhancement. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  R. Abercrombie,et al.  Free diffusion coefficient of ionic calcium in cytoplasm. , 1987, Cell calcium.

[32]  J. Bourne,et al.  Balancing structure and function at hippocampal dendritic spines. , 2008, Annual review of neuroscience.

[33]  P. Renaud,et al.  Transport phenomena in nanofluidics , 2008 .

[34]  Rafael Yuste,et al.  Electrical compartmentalization in dendritic spines. , 2013, Annual review of neuroscience.

[35]  Christof Koch,et al.  Cable theory in neurons with active, linearized membranes , 2004, Biological Cybernetics.

[36]  Philip H. Gordon,et al.  Programmable ion-sensitive transistor interfaces. II. Biomolecular sensing and manipulation. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[37]  Rafael Yuste,et al.  Targeted intracellular voltage recordings from dendritic spines using quantum-dot-coated nanopipettes. , 2017, Nature nanotechnology.

[38]  C. Koch,et al.  Electrical properties of dendritic spines , 1983, Trends in Neurosciences.

[39]  Mark T. Harnett,et al.  Dendritic Spines Prevent Synaptic Voltage Clamp , 2018, Neuron.

[40]  Dejan Zecevic,et al.  Electrical behaviour of dendritic spines as revealed by voltage imaging , 2015, Nature Communications.

[41]  Rafael Yuste,et al.  On the electrical function of dendritic spines , 2004, Trends in Neurosciences.

[42]  L. Savtchenko,et al.  Spike-Driven Glutamate Electrodiffusion Triggers Synaptic Potentiation via a Homer-Dependent mGluR-NMDAR Link , 2013, Neuron.

[43]  U. Nägerl,et al.  Spine neck plasticity regulates compartmentalization of synapses , 2014, Nature Neuroscience.

[44]  Rafael Yuste,et al.  Deconvolution of Voltage Sensor Time Series and Electro-Diffusion Modeling of Synaptic Input in Dendritic Spines , 2017 .

[45]  Rafael Yuste,et al.  The new nanophysiology: regulation of ionic flow in neuronal subcompartments , 2015, Nature Reviews Neuroscience.

[46]  Rafael Yuste,et al.  Dendritic Spines and Distributed Circuits , 2011, Neuron.

[47]  T. J. Sejnowski,et al.  An electro-diffusion model for computing membrane potentials and ionic concentrations in branching dendrites, spines and axons , 1989, Biological Cybernetics.

[48]  W. Gan,et al.  Stably maintained dendritic spines are associated with lifelong memories , 2009, Nature.