暂无分享,去创建一个
[1] George B. Dantzig,et al. Decomposition Principle for Linear Programs , 1960 .
[2] Leonidas J. Guibas,et al. A metric for distributions with applications to image databases , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).
[3] Adam M. Oberman,et al. Numerical solution of the Optimal Transportation problem using the Monge-Ampère equation , 2012, J. Comput. Phys..
[4] Jacques Desrosiers,et al. Accelerating Strategies in Column Generation Methods for Vehicle Routing and Crew Scheduling Problems , 2002 .
[5] L. Younes,et al. On the metrics and euler-lagrange equations of computational anatomy. , 2002, Annual review of biomedical engineering.
[6] Gabriel Peyré,et al. Optimal Transport with Proximal Splitting , 2013, SIAM J. Imaging Sci..
[7] L. Kantorovich. On the Translocation of Masses , 2006 .
[8] Eiji Oki,et al. GLPK (GNU Linear Programming Kit) , 2012 .
[9] Leonidas J. Guibas,et al. Functional map networks for analyzing and exploring large shape collections , 2014, ACM Trans. Graph..
[10] M. Klein. A Primal Method for Minimal Cost Flows with Applications to the Assignment and Transportation Problems , 1966 .
[11] T. Glimm,et al. Iterative Scheme for Solving Optimal Transportation Problems Arising in Reflector Design , 2011, 1110.3061.
[12] Alexandr Andoni,et al. Earth mover distance over high-dimensional spaces , 2008, SODA '08.
[13] Leonidas J. Guibas,et al. Consistent Shape Maps via Semidefinite Programming , 2013, SGP '13.
[14] H. Kuhn. The Hungarian method for the assignment problem , 1955 .
[15] D. R. Fulkerson,et al. Solving a Transportation Problem , 1956 .
[16] L. Rosasco,et al. Multiscale geometric methods for data sets I: Multiscale SVD, noise and curvature , 2017 .
[17] Chris L. Jackins,et al. Oct-trees and their use in representing three-dimensional objects , 1980 .
[18] M. Cullen. A Mathematical Theory of Large-scale Atmosphere/ocean Flow , 2006 .
[19] David K. Smith. Network Flows: Theory, Algorithms, and Applications , 1994 .
[20] Christoph Schnörr,et al. A Hierarchical Approach to Optimal Transport , 2013, SSVM.
[21] Arthur Cayley,et al. The Collected Mathematical Papers: On Monge's “Mémoire sur la théorie des déblais et des remblais” , 2009 .
[22] Mauro Maggioni,et al. Approximation of Points on Low-Dimensional Manifolds Via Random Linear Projections , 2012, ArXiv.
[24] Mauro Maggioni,et al. Adaptive Geometric Multiscale Approximations for Intrinsically Low-dimensional Data , 2016, Journal of machine learning research.
[25] James B. Orlin,et al. A polynomial time primal network simplex algorithm for minimum cost flows , 1996, SODA '96.
[26] Andrew V. Goldberg,et al. Solving minimum-cost flow problems by successive approximation , 1987, STOC.
[27] Franz Aurenhammer,et al. Minkowski-Type Theorems and Least-Squares Clustering , 1998, Algorithmica.
[28] Quentin Mérigot,et al. A Multiscale Approach to Optimal Transport , 2011, Comput. Graph. Forum.
[29] Y. Brenier. Polar Factorization and Monotone Rearrangement of Vector-Valued Functions , 1991 .
[30] Jon Louis Bentley,et al. Multidimensional binary search trees used for associative searching , 1975, CACM.
[31] Ross T. Whitaker,et al. Manifold modeling for brain population analysis , 2010, Medical Image Anal..
[32] Robert E. Tarjan,et al. Dynamic trees as search trees via euler tours, applied to the network simplex algorithm , 1997, Math. Program..
[33] David W. Jacobs,et al. Approximate earth mover’s distance in linear time , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.
[34] J. H. Ward. Hierarchical Grouping to Optimize an Objective Function , 1963 .
[35] Marco Cuturi,et al. Sinkhorn Distances: Lightspeed Computation of Optimal Transportation , 2013, NIPS 2013.
[36] Robert Krauthgamer,et al. Navigating nets: simple algorithms for proximity search , 2004, SODA '04.
[37] Lei Zhu,et al. Optimal Mass Transport for Registration and Warping , 2004, International Journal of Computer Vision.
[38] M. Beckmann. A Continuous Model of Transportation , 1952 .
[39] Jon Louis Bentley,et al. Quad trees a data structure for retrieval on composite keys , 1974, Acta Informatica.
[40] William H. Cunningham,et al. A network simplex method , 1976, Math. Program..
[41] John Langford,et al. Cover trees for nearest neighbor , 2006, ICML.
[42] Angelo Iollo,et al. A lagrangian scheme for the solution of the optimal mass transfer problem , 2011, J. Comput. Phys..
[43] J. Desrosiers,et al. A Primer in Column Generation , 2005 .
[44] Paul Tseng,et al. Relaxation Methods for Minimum Cost Ordinary and Generalized Network Flow Problems , 1988, Oper. Res..
[45] Patrice Assouad. Plongements lipschitziens dans ${\mathbb {R}}^n$ , 1983 .
[46] Guangliang Chen,et al. A fast multiscale framework for data in high-dimensions: Measure estimation, anomaly detection, and compressive measurements , 2012, 2012 Visual Communications and Image Processing.
[47] M. Maggioni,et al. Multiscale Geometric Methods for Data Sets II: Geometric Multi-Resolution Analysis , 2011, 1105.4924.
[48] David Avis,et al. Ground metric learning , 2011, J. Mach. Learn. Res..
[49] Yann Brenier,et al. A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem , 2000, Numerische Mathematik.
[50] Leonidas J. Guibas,et al. One Point Isometric Matching with the Heat Kernel , 2010, Comput. Graph. Forum.
[51] Guillaume Carlier,et al. Optimal Transportation with Traffic Congestion and Wardrop Equilibria , 2006, SIAM J. Control. Optim..
[52] Steven Haker,et al. Minimizing Flows for the Monge-Kantorovich Problem , 2003, SIAM J. Math. Anal..
[53] Bernhard Schmitzer. A sparse algorithm for dense optimal transport , 2015, SSVM.
[54] Arnaud Doucet,et al. Fast Computation of Wasserstein Barycenters , 2013, ICML.
[55] Adam M. Oberman,et al. An efficient linear programming method for Optimal Transportation , 2015, 1509.03668.