On the stability of a nonlinear maturity structured model of cellular proliferation

We analyse the asymptotic behaviour of a nonlinear mathematical model of cellular proliferation which describes the production of blood cells in the bone marrow. This model takes the form of a system of two maturity structured partial dierential equations, with a retardation of the maturation variable and a time delay depending on this maturity. We show that the stability of this system depends strongly on the behaviour of the immature cells population. We obtain conditions for the global stability and the instability of the trivial solution.

[1]  L Sachs The molecular control of hemopoiesis and leukemia. , 1993, Comptes rendus de l'Academie des sciences. Serie III, Sciences de la vie.

[2]  Michael C. Mackey,et al.  Propagating fronts, chaos and multistability in a cell replication model. , 1996, Chaos.

[3]  M C Mackey,et al.  Global stability in a delayed partial differential equation describing cellular replication , 1994, Journal of mathematical biology.

[4]  M C Mackey,et al.  Unified hypothesis for the origin of aplastic anemia and periodic hematopoiesis. , 1978, Blood.

[5]  B. Williams,et al.  Quiescence, cycling, and turnover in the primitive hematopoietic stem cell compartment. , 1997, Experimental hematology.

[6]  MULTISTABILITY AND BOUNDARY LAYER DEVELOPMENT IN A TRANSPORT EQUATION WITH DELAYED ARGUMENTS , 2005 .

[7]  Laurent Pujo-Menjouet,et al.  A mathematical model describing cellular division with a proliferating phase duration depending on the maturity of cells. , 2003 .

[8]  R. Nagel,et al.  One-parameter semigroups for linear evolution equations , 1999 .

[9]  Glenn F. Webb,et al.  A nonlinear age and maturity structured model of population dynamics. I. Basic theory , 2000 .

[10]  Laurent Pujo-Menjouet,et al.  A singular transport model describing cellular division , 2001 .

[11]  Fabien Crauste,et al.  Global stability of a partial differential equation with distributed delay due to cellular replication , 2003, 0904.2472.

[12]  Laurent Pujo-Menjouet,et al.  Asymptotic behavior of a singular transport equation modelling cell division , 2003 .

[13]  Michael C. Mackey,et al.  Unified hypothesis for the origin of aplastic anemia and periodic hematopoiesis , 1978 .

[14]  Propagation of population pulses and fronts in a cell replication problem: Non-locality and dependence on the initial function , 1995 .

[15]  Michael C. Mackey,et al.  A new criterion for the global stability of simultaneous cell replication and maturation processes , 1999 .

[16]  Fabien Crauste,et al.  Existence, positivity and stability for a nonlinear model of cellular proliferation , 2005, 0904.2473.

[17]  M. Mackey,et al.  Sufficient conditions for stability of linear differential equations with distributed delay , 2001 .

[18]  I. Tannock,et al.  ON THE EXISTENCE OF A Go‐PHASE IN THE CELL CYCLE , 1970 .

[19]  I. Tannock,et al.  On the existence of a G 0 -phase in the cell cycle. , 1970, Cell and tissue kinetics.

[20]  Richard Bellman,et al.  Differential-Difference Equations , 1967 .

[21]  Dependence on initial conditions in nonlocal PDE's and hereditary dynamical systems , 1995 .

[22]  GLENN F. WEBB,et al.  A SINGULAR TRANSPORT EQUATION MODELLING A PROLIFERATING MATURITY STRUCTURED CELL POPULATION , 2005 .

[23]  Andrew W. Murray,et al.  The Cell Cycle , 1989 .

[24]  Cliburn Chan,et al.  T cell sensitivity and specificity - kinetic proofreading revisited , 2003 .

[25]  Glenn F. Webb,et al.  A Nonlinear Age and Maturity Structured Model of Population Dynamics: II. Chaos , 2000 .

[26]  Transitions and kinematics of reaction-convection fronts in a cell population model , 1995 .

[27]  V. Hu The Cell Cycle , 1994, GWUMC Department of Biochemistry Annual Spring Symposia.