High spatial resolution thermal conductivity and Raman spectroscopy investigation of hydride vapor phase epitaxy grown n-GaN/sapphire (0001): Doping dependence

We have measured high resolution thermal conductivity (κ) and Raman spectra {E2 mode [high frequency], A1 mode [longitudinal optical (LO)], and high frequency LO-plasmon coupled mode [LPP+]} at 300 K of three series of n-GaN/sapphire (0001) samples fabricated by hydride vapor phase epitaxy (HVPE). The former was determined with a scanning thermal microscope while the latter was obtained using a micro-Raman system, both having a spatial resolution of ≈2–3 μm. For all three sets of samples the thermal conductivity decreased linearly with log n, about a factor of two decrease in κ for every decade increase in n. Also, we found a correlation between film thickness and improved thermal conductivity. Furthermore, κ≈1.95 W/cm K for one of the most lightly doped samples (≈6.9×1016 cm−3), higher than previously reported κ≈1.7–1.8 W/cm K on lateral epitaxial overgrown (LEO) material with n≈(1–2)×1017 cm−3 [V. M. Asnin et al., Appl. Phys. Lett. 75, 1240 (1999)], κ=1.55 W/cm K on LEO samples using a third-harmonic te...

[1]  L. Romano,et al.  Hall-effect analysis of GaN films grown by hydride vapor phase epitaxy , 1998 .

[2]  G. A. Slack,et al.  Nonmetallic crystals with high thermal conductivity , 1973 .

[3]  L. Romano,et al.  Thickness Dependence of Electronic Properties of GaN Epi-layers , 1996 .

[4]  Inspec,et al.  Properties of group III nitrides , 1994 .

[5]  H. Harima,et al.  ELECTRONIC PROPERTIES IN P-TYPE GAN STUDIED BY RAMAN SCATTERING , 1998 .

[6]  Jeanette G. Grasselli,et al.  Analytical Raman spectroscopy , 1991 .

[7]  Mo Song,et al.  Sub-surface imaging by scanning thermal microscopy , 1996 .

[8]  H. Goldsmid,et al.  Thermal conduction in semiconductors , 1961 .

[9]  Tetsu Kachi,et al.  Raman scattering from LO phonon‐plasmon coupled modes in gallium nitride , 1994 .

[10]  James H. Edgar,et al.  Properties, processing and applications of gallium nitride and related semiconductors , 1999 .

[11]  Baoquan Sun,et al.  Formation mechanism of a degenerate thin layer at the interface of a GaN/sapphire system , 2000 .

[12]  W. Knap,et al.  Investigation of longitudinal‐optical phonon‐plasmon coupled modes in highly conducting bulk GaN , 1995 .

[13]  J. Pankove,et al.  Thermal Conductivity of GaN, 25-360 K , 1977 .

[14]  S. Denbaars,et al.  Thermal conductivity of lateral epitaxial overgrown GaN films , 1999 .

[15]  Theodore D. Moustakas,et al.  Broadening of near-band-gap photoluminescence in n-GaN films , 1998 .

[16]  M. Shur,et al.  GaN/AIGaN Heterostructure Devices: Photodetectors and Field-Effect Transistors , 1997 .

[17]  Fred H. Pollak,et al.  Determination of the thermal conductivity of diamond-like nanocomposite films using a scanning thermal microscope , 1998 .

[18]  S. Nakamura Blue-Green Light-Emitting Diodes and Violet Laser Diodes , 1997 .

[19]  I. Ferguson,et al.  HIGH SPATIAL RESOLUTION THERMAL CONDUCTIVITY OF LATERAL EPITAXIAL OVERGROWN GAN/SAPPHIRE (0001) USING A SCANNING THERMAL MICROSCOPE , 1999 .

[20]  Larry A. Coldren,et al.  Improved Characteristics of InGaN Multi-Quantum-Well Laser Diodes Grown on Laterally Epitaxially Overgrown GaN on Sapphire , 2000 .

[21]  Noble M. Johnson,et al.  Growth of gallium nitride by hydride vapor-phase epitaxy , 1997 .

[22]  Andreas Hoffmann,et al.  Zone-boundary phonons in hexagonal and cubic GaN , 1997 .

[23]  David C. Look,et al.  Degenerate layer at GaN/sapphire interface: Influence on Hall-effect measurements , 1997 .

[24]  Steven Prawer,et al.  Temperature dependence of Raman scattering in single crystal GaN films , 1999 .

[25]  F. H. Long,et al.  RAMAN MICROSCOPY OF LATERAL EPITAXIAL OVERGROWTH OF GAN ON SAPPHIRE , 1999 .

[26]  C. Kittel Introduction to solid state physics , 1954 .

[27]  Juergen Christen,et al.  Optical microscopy of electronic and structural properties of epitaxial laterally overgrown GaN , 1999 .