RobustNeRF: Ignoring Distractors with Robust Losses 4

Neural radiance fields (NeRF) excel at synthesizing new views given multi-view, calibrated images of a static scene. When scenes include distractors, which are not persistent during image capture (moving objects, lighting variations, shadows), artifacts appear as view-dependent effects or ’floaters’. To cope with distractors, we advocate a form of robust estimation for NeRF training, modeling distractors in training data as outliers of an optimization problem. Our method successfully removes outliers from a scene and improves upon our baselines, on synthetic and real-world scenes. Our technique is simple to incorporate in modern NeRF frameworks, with few hyper-parameters. It does not assume a priori knowledge of the types of distractors, and is instead focused on the optimization problem rather than pre-processing or modeling transient objects. More results at https://robustnerf.github.io/public .

[1]  J. Leonard,et al.  NeRF-SLAM: Real-Time Dense Monocular SLAM with Neural Radiance Fields , 2022, 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[2]  Ben Poole,et al.  DreamFusion: Text-to-3D using 2D Diffusion , 2022, ICLR.

[3]  A. Tagliasacchi,et al.  Volume Rendering Digest (for NeRF) , 2022, ArXiv.

[4]  Jason Y. Zhang,et al.  RelPose: Predicting Probabilistic Relative Rotation for Single Objects in the Wild , 2022, ECCV.

[5]  T. Funkhouser,et al.  MobileNeRF: Exploiting the Polygon Rasterization Pipeline for Efficient Neural Field Rendering on Mobile Architectures , 2022, 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[6]  C. Theobalt,et al.  NeuRIS: Neural Reconstruction of Indoor Scenes Using Normal Priors , 2022, ECCV.

[7]  Andreas Geiger,et al.  MonoSDF: Exploring Monocular Geometric Cues for Neural Implicit Surface Reconstruction , 2022, NeurIPS.

[8]  A. Tagliasacchi,et al.  D$^2$NeRF: Self-Supervised Decoupling of Dynamic and Static Objects from a Monocular Video , 2022, 2205.15838.

[9]  Yuanzhen Li,et al.  SAMURAI: Shape And Material from Unconstrained Real-world Arbitrary Image collections , 2022, NeurIPS.

[10]  Mike Zheng Shou,et al.  DeVRF: Fast Deformable Voxel Radiance Fields for Dynamic Scenes , 2022, NeurIPS.

[11]  M. Nießner,et al.  Fast Dynamic Radiance Fields with Time-Aware Neural Voxels , 2022, SIGGRAPH Asia.

[12]  N. Mitra,et al.  ReLU Fields: The Little Non-linearity That Could , 2022, SIGGRAPH.

[13]  S. Lucey,et al.  GARF: Gaussian Activated Radiance Fields for High Fidelity Reconstruction and Pose Estimation , 2022, ArXiv.

[14]  David J. Fleet,et al.  Kubric: A scalable dataset generator , 2022, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[15]  Pratul P. Srinivasan,et al.  Block-NeRF: Scalable Large Scene Neural View Synthesis , 2022, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[16]  T. Müller,et al.  Instant neural graphics primitives with a multiresolution hash encoding , 2022, ACM Trans. Graph..

[17]  Martin R. Oswald,et al.  NICE-SLAM: Neural Implicit Scalable Encoding for SLAM , 2021, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[18]  Jonathan T. Barron,et al.  Ref-NeRF: Structured View-Dependent Appearance for Neural Radiance Fields , 2021, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[19]  Jonathan T. Barron,et al.  RegNeRF: Regularizing Neural Radiance Fields for View Synthesis from Sparse Inputs , 2021, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[20]  Jonathan T. Barron,et al.  Urban Radiance Fields , 2021, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[21]  P. Sander,et al.  Deblur-NeRF: Neural Radiance Fields from Blurry Images , 2021, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[22]  Jonathan T. Barron,et al.  NeRF in the Dark: High Dynamic Range View Synthesis from Noisy Raw Images , 2021, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[23]  Andrea Tagliasacchi,et al.  NeSF: Neural Semantic Fields for Generalizable Semantic Segmentation of 3D Scenes , 2021, Trans. Mach. Learn. Res..

[24]  Pratul P. Srinivasan,et al.  Mip-NeRF 360: Unbounded Anti-Aliased Neural Radiance Fields , 2021, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[25]  Federico Tombari,et al.  Neural Fields in Visual Computing and Beyond , 2021, Comput. Graph. Forum.

[26]  K. M. Yi,et al.  LOLNeRF: Learn from One Look , 2021, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[27]  Andrea Vedaldi,et al.  NeuralDiff: Segmenting 3D objects that move in egocentric videos , 2021, 2021 International Conference on 3D Vision (3DV).

[28]  Jeannette Bohg,et al.  Vision-Only Robot Navigation in a Neural Radiance World , 2021, IEEE Robotics and Automation Letters.

[29]  Patrick Labatut,et al.  Common Objects in 3D: Large-Scale Learning and Evaluation of Real-life 3D Category Reconstruction , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[30]  Minsu Cho,et al.  Self-Calibrating Neural Radiance Fields , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[31]  J.-Y. Zhu,et al.  Advances in Neural Rendering , 2021, SIGGRAPH Courses.

[32]  Jonathan T. Barron,et al.  HyperNeRF , 2021, ACM Trans. Graph..

[33]  C. Theobalt,et al.  NeuS: Learning Neural Implicit Surfaces by Volume Rendering for Multi-view Reconstruction , 2021, NeurIPS.

[34]  Johannes Kopf,et al.  Dynamic View Synthesis from Dynamic Monocular Video , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[35]  Simon Lucey,et al.  Neural Trajectory Fields for Dynamic Novel View Synthesis , 2021, ArXiv.

[36]  Andreas Geiger,et al.  UNISURF: Unifying Neural Implicit Surfaces and Radiance Fields for Multi-View Reconstruction , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[37]  Antonio Torralba,et al.  BARF: Bundle-Adjusting Neural Radiance Fields , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[38]  Jonathan T. Barron,et al.  Baking Neural Radiance Fields for Real-Time View Synthesis , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[39]  Pratul P. Srinivasan,et al.  Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[40]  Richard A. Newcombe,et al.  Neural 3D Video Synthesis from Multi-view Video , 2021, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[41]  M. Zollhöfer,et al.  Non-Rigid Neural Radiance Fields: Reconstruction and Novel View Synthesis of a Dynamic Scene From Monocular Video , 2020, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[42]  Jiajun Wu,et al.  Neural Radiance Flow for 4D View Synthesis and Video Processing , 2020, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[43]  Angjoo Kanazawa,et al.  pixelNeRF: Neural Radiance Fields from One or Few Images , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[44]  Francesc Moreno-Noguer,et al.  D-NeRF: Neural Radiance Fields for Dynamic Scenes , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[45]  Zhengqi Li,et al.  Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[46]  Changil Kim,et al.  Space-time Neural Irradiance Fields for Free-Viewpoint Video , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[47]  Kai Zhang,et al.  NeRF++: Analyzing and Improving Neural Radiance Fields , 2020, ArXiv.

[48]  Jonathan T. Barron,et al.  NeRF in the Wild: Neural Radiance Fields for Unconstrained Photo Collections , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[49]  Pratul P. Srinivasan,et al.  NeRF , 2020, ECCV.

[50]  Eduard Trulls,et al.  ACNe: Attentive Context Normalization for Robust Permutation-Equivariant Learning , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[51]  Gordon Wetzstein,et al.  Scene Representation Networks: Continuous 3D-Structure-Aware Neural Scene Representations , 2019, NeurIPS.

[52]  Alexei A. Efros,et al.  The Unreasonable Effectiveness of Deep Features as a Perceptual Metric , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[53]  Jonathan T. Barron,et al.  A General and Adaptive Robust Loss Function , 2017, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[54]  Andrea Tagliasacchi,et al.  Modern techniques and applications for real-time non-rigid registration , 2016, SIGGRAPH ASIA Courses.

[55]  Jan-Michael Frahm,et al.  Pixelwise View Selection for Unstructured Multi-View Stereo , 2016, ECCV.

[56]  Jan-Michael Frahm,et al.  Structure-from-Motion Revisited , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[57]  Eero P. Simoncelli,et al.  Image quality assessment: from error visibility to structural similarity , 2004, IEEE Transactions on Image Processing.

[58]  Pavel Krsek,et al.  The Trimmed Iterative Closest Point algorithm , 2002, Object recognition supported by user interaction for service robots.

[59]  Kiriakos N. Kutulakos,et al.  A Theory of Shape by Space Carving , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.