Local provincialism of late Permian plant–arthropod associations in South Cathaysia: Evidence of arthropod-mediated damages in a Wuchiapingian assemblage of South China

[1]  S. McLoughlin,et al.  Specialized herbivory in fossil leaves reveals convergent origins of nyctinasty , 2023, Current Biology.

[2]  A. Holland,et al.  South African Lagerstätte reveals middle Permian Gondwanan lakeshore ecosystem in exquisite detail , 2022, Communications Biology.

[3]  P. Wegierek,et al.  Possible long-proboscid insect pollinators from the Early Permian of Russia , 2022, Current Biology.

[4]  S. Goswami,et al.  Insect traces on Lower Gondwana plants of Ib River Basin, Odisha: First record from Late Permian sediments of India , 2022, Geological Journal.

[5]  Bainian Sun,et al.  A new gigantopterid taxon Paragigantopteris qingloongensis gen. et sp. nov. from the Permian (Wuchiapingian) of southwestern China: Taxonomic and biogeographic implications , 2022, Review of Palaeobotany and Palynology.

[6]  S. Maccracken,et al.  Insect herbivory on Catula gettyi gen. et sp. nov. (Lauraceae) from the Kaiparowits Formation (Late Cretaceous, Utah, USA) , 2022, PloS one.

[7]  Jun Wang,et al.  Discovery of coprolites in an Early Permian fern mesophyll , 2022, Palaeoentomology.

[8]  Bárbara Cariglino,et al.  The fossil record of plant-insect interactions and associated entomofaunas in Permian and Triassic floras from southwestern Gondwana: A review and future prospects , 2021 .

[9]  S. McLoughlin,et al.  Arthropod interactions with the Permian Glossopteris flora , 2021, Journal of Palaeosciences.

[10]  J. Payne,et al.  Generating and testing hypotheses about the fossil record of insect herbivory with a theoretical ecospace , 2021, bioRxiv.

[11]  W. Fagan,et al.  Understanding the ecology of host plant–insect herbivore interactions in the fossil record through bipartite networks , 2021, Paleobiology.

[12]  C. Labandeira,et al.  Florivory of Early Cretaceous flowers by functionally diverse insects: implications for early angiosperm pollination , 2021, Proceedings of the Royal Society B.

[13]  Lei Gao,et al.  Systematics and palaeoecology of fossil plants from the Upper Permian Longtan Formation in western Guizhou Province, southwestern China , 2021, Historical Biology.

[14]  Jun Wang,et al.  A new gigantopterid genus from the late Permian of the Daha Coalfield, Tibetan Plateau and its implication on plant-insect interactions , 2020, Historical Biology.

[15]  R. Iannuzzi,et al.  FIRST EVIDENCE OF SEED PREDATION BY ARTHROPODS FROM GONDWANA AND ITS EARLY PALEOZOIC HISTORY (RIO BONITO FORMATION, PARANÁ BASIN, BRAZIL) , 2020, Palaios.

[16]  D. Vasilenko,et al.  First Report of Insect Endophytic Oviposition from the Upper Permian of the Pechora Basin, on a Leaf of Phylladoderma (Peltaspermopsida: Cardiolepidaceae) , 2020, Paleontological Journal.

[17]  Jun Wang,et al.  Plant–insect interactions in the early Permian Wuda Tuff Flora, North China , 2020 .

[18]  C. Labandeira,et al.  A latitudinal gradient of plant–insect interactions during the late Permian in terrestrial ecosystems? New evidence from Southwest China , 2020 .

[19]  Qiong Wu,et al.  Dynamic palaeogeographic reconstructions of the Wuchiapingian Stage (Lopingian, Late Permian) for the South China Block , 2020 .

[20]  Zhuo Feng,et al.  From rainforest to herbland: New insights into land plant responses to the end-Permian mass extinction , 2020 .

[21]  J. Chiesa,et al.  Plant-insect interactions in the fossil flora of the Bajo de Veliz Formation (Gzhelian - Asselian): San Luis, Argentina , 2020 .

[22]  Fujun Ma,et al.  Plant–insect interactions from the Miocene (Burdigalian–Langhian) of Jiangxi, China , 2020 .

[23]  S. Maccracken,et al.  Sampling fossil floras for the study of insect herbivory: how many leaves is enough? , 2020 .

[24]  S. Maccracken,et al.  The Middle Permian South Ash Pasture Assemblage of North-Central Texas: Coniferophyte and Gigantopterid Herbivory and Longer-Term Herbivory Trends , 2020, International Journal of Plant Sciences.

[25]  Zhuo Feng,et al.  Fungi–plant–arthropods interactions in a new conifer wood from the uppermost Permian of China reveal complex ecological relationships and trophic networks , 2019 .

[26]  M. Rampino,et al.  The end-Guadalupian (259.8 Ma) biodiversity crisis: the sixth major mass extinction? , 2019, Historical Biology.

[27]  A. Ślipiński,et al.  Beetle borings in wood with host response in early Permian conifers from Germany , 2019, PalZ.

[28]  M. Abedi,et al.  Changes in pattern of plant-insect interactions on the Persian ironwood (Parrotia persica, Hamamelidaceae) over the last 3 million years , 2018, Review of Palaeobotany and Palynology.

[29]  Bárbara Cariglino Patterns of insect-mediated damage in a Permian Glossopteris flora from Patagonia (Argentina) , 2018, Palaeogeography, Palaeoclimatology, Palaeoecology.

[30]  V. Isaev,et al.  Permian Fossil Plants from the Sediments of the Vorkuta Series at the Pechora Coal Basin in the Collection of the Earth Science Museum of Moscow State University , 2018, Moscow University Geology Bulletin.

[31]  Peter A. Cawood,et al.  Provenance of Late Permian volcanic ash beds in South China: Implications for the age of Emeishan volcanism and its linkage to climate cooling , 2018, Lithos.

[32]  Qiong Wu,et al.  Permian integrative stratigraphy and timescale of China , 2018, Science China Earth Sciences.

[33]  Peter A. Cawood,et al.  Early Wuchiapingian cooling linked to Emeishan basaltic weathering? , 2018, Earth and Planetary Science Letters.

[34]  C. Labandeira,et al.  Williamson Drive: Herbivory from a north-central Texas flora of latest Pennsylvanian age shows discrete component community structure, expansion of piercing and sucking, and plant counterdefenses , 2018 .

[35]  Jun Wang,et al.  Occurrence of the earliest gigantopterid from the basal Permian of the North China Block and its bearing on evolution , 2018 .

[36]  S. Maccracken,et al.  The importance of sampling standardization for comparisons of insect herbivory in deep time: a case study from the late Palaeozoic , 2018, Royal Society Open Science.

[37]  K. Angielczyk,et al.  Late Permian (Lopingian) terrestrial ecosystems: A global comparison with new data from the low-latitude Bletterbach Biota , 2017 .

[38]  S. Shen,et al.  The Permian timescale: an introduction , 2017, Special Publications.

[39]  R. Roessler,et al.  Late Permian wood-borings reveal an intricate network of ecological relationships , 2017, Nature Communications.

[40]  Zhuo Feng Late Palaeozoic plants , 2017, Current Biology.

[41]  Hua Zhang,et al.  What caused the five mass extinctions , 2017 .

[42]  R. Srivastava,et al.  Insect herbivory in Gondwana plants , 2016, Journal of Palaeosciences.

[43]  S. McLoughlin,et al.  The first record of the Permian Glossopteris flora from Sri Lanka: implications for hydrocarbon source rocks in the Mannar Basin , 2016, Geological Magazine.

[44]  Jun Wang,et al.  Plant-arthropod and plant-fungus interactions in late Permian gymnospermous woods from the Bogda Mountains, Xinjiang, northwestern China , 2016 .

[45]  C. Labandeira,et al.  Floral Assemblages and Patterns of Insect Herbivory during the Permian to Triassic of Northeastern Italy , 2016, PloS one.

[46]  L. Duarte,et al.  Insect herbivory fluctuations through geological time. , 2016, Ecology.

[47]  S. Sanchez,et al.  Biological and physical evidence for extreme seasonality in central Permian Pangea , 2016 .

[48]  Jun Wang,et al.  Gigantopteris Schenk ex Yabe in the Capitanian–Wuchiapingian (middle-late Permian) flora of central Shanxi in North China: Palaeobiogeographical and palaeoecological implications , 2016 .

[49]  C. Labandeira,et al.  Insect herbivory from early Permian Mitchell Creek Flats of north-central Texas: Opportunism in a balanced component community , 2015 .

[50]  R. Iannuzzi,et al.  FIRST REPORT OF FEEDING TRACES IN PERMIAN BOTRYCHIOPSIS LEAVES FROM WESTERN GONDWANA , 2015 .

[51]  D. Erwin,et al.  When and how did the terrestrial mid-Permian mass extinction occur? Evidence from the tetrapod record of the Karoo Basin, South Africa , 2015, Proceedings of the Royal Society B: Biological Sciences.

[52]  S. McLoughlin,et al.  A high-latitude Gondwanan lagerstätte: The Permian permineralised peat biota of the Prince Charles Mountains, Antarctica , 2015 .

[53]  C. Labandeira,et al.  Plant-Insect Interactions from Early Permian (Kungurian) Colwell Creek Pond, North-Central Texas: The Early Spread of Herbivory in Riparian Environments , 2014, International Journal of Plant Sciences.

[54]  E. Karasev,et al.  Biodamage on Phylladoderma leaves from the Upper Permian of the Pechora Basin , 2014, Paleontological journal.

[55]  T. Davies,et al.  Macroecological and macroevolutionary patterns of leaf herbivory across vascular plants , 2014, Proceedings of the Royal Society B: Biological Sciences.

[56]  Héctor Barrios,et al.  Insect Leaf-Chewing Damage Tracks Herbivore Richness in Modern and Ancient Forests , 2014, PloS one.

[57]  I. Escapa,et al.  Plant–arthropod interactions in gymnosperm leaves from the Early Permian of Patagonia, Argentina , 2014 .

[58]  C. Labandeira,et al.  Middle Devonian liverwort herbivory and antiherbivore defence. , 2014, The New phytologist.

[59]  C. Labandeira,et al.  Plant paleopathology and the roles of pathogens and insects. , 2014, International journal of paleopathology.

[60]  C. Labandeira A paleobiologic perspective on plant-insect interactions. , 2013, Current opinion in plant biology.

[61]  C. Labandeira,et al.  The Fossil Record of Plant-Insect Dynamics , 2013 .

[62]  Daril A Vilhena,et al.  Provincialization of terrestrial faunas following the end-Permian mass extinction , 2013, Proceedings of the National Academy of Sciences.

[63]  C. Labandeira Deep-time patterns of tissue consumption by terrestrial arthropod herbivores , 2013, Naturwissenschaften.

[64]  Gregory W. Stull,et al.  The “Seeds” on Padgettia readi are Insect Galls: Reassignment of the Plant to Odontopteris, the Gall to Ovofoligallites N. Gen., and the Evolutionary Implications Thereof , 2013, Journal of Paleontology.

[65]  R. Iannuzzi,et al.  New evidence of plant-insect interactions in the Lower Permian from Western Gondwana , 2012, Journal of Palaeosciences.

[66]  S. McLoughlin,et al.  Animal–plant interactions in a Middle Permian permineralised peat of the Bainmedart Coal Measures, Prince Charles Mountains, Antarctica , 2012 .

[67]  R. Roessler,et al.  A Novel Coniferous Tree Trunk with Septate Pith from the Guadalupian (Permian) of China: Ecological and Evolutionary Significance , 2012, International Journal of Plant Sciences.

[68]  Zhuo Feng Ningxiaites specialis, a new woody gymnosperm from the uppermost Permian of China , 2012 .

[69]  S. N. Césari,et al.  A late Paleozoic fossil forest from the southern Andes, Argentina , 2012 .

[70]  R. Iannuzzi,et al.  Specificity of leaf damage in the Permian “Glossopteris Flora”: A quantitative approach , 2012 .

[71]  J. Hagström,et al.  The dawn of terrestrial ecosystems on Baltica: First report on land plant remains and arthropod coprolites from the Upper Silurian of Gotland, Sweden , 2012 .

[72]  Marco Roscher,et al.  The effect of global warming and global cooling on the distribution of the latest Permian climate zones , 2011 .

[73]  Yi-Feng Yao,et al.  Spatiotemporal extension of the Euramerican Psaronius component community to the Late Permian of Cathaysia: In situ coprolites in a P. housuoensis stem from Yunnan Province, southwest China , 2011 .

[74]  D. Vassilenko The first record of endophytic insect oviposition from the Tartarian of European Russia , 2011 .

[75]  S. McLoughlin New records of leaf galls and arthropod oviposition scars in Permian–Triassic Gondwanan gymnosperms , 2011 .

[76]  Deepa Agnihotri,et al.  Insect traces on early Permian plants of India , 2011 .

[77]  P. R. Gutiérrez,et al.  Plant-Insect Interactions in a Glossopteris Flora from the la Golondrina Formation (Guadalupian—Lopingian), Santa Cruz Province, Patagonia, Argentina , 2011 .

[78]  A. Ponomarenko,et al.  Possible traces of feeding by beetles in coniferophyte wood from the Kazanian of the Kama River basin , 2010 .

[79]  P. Wignall,et al.  The Middle Permian (Capitanian) mass extinction on land and in the oceans , 2010 .

[80]  Jun Wang Late Paleozoic macrofloral assemblages from Weibei Coalfield, with reference to vegetational change through the Late Paleozoic Ice-age in the North China Block , 2010 .

[81]  Jun Wang,et al.  First report of oribatid mite (arthropod) borings and coprolites in Permian woods from the Helan Mountains of northern China , 2010 .

[82]  G. Shi,et al.  The Lopingian of Australasia: a review of biostratigraphy, correlations, palaeogeography and palaeobiogeography , 2010 .

[83]  C. Labandeira,et al.  Portrait of a Gondwanan ecosystem: A new late Permian fossil locality from KwaZulu-Natal, South Africa , 2009 .

[84]  L. R. Leighton,et al.  Impact of the Paleocene-Eocene thermal maximum on deep-ocean microbenthic community structure: Using rank-abundance curves to quantify paleoecological response , 2009 .

[85]  Jun Wang,et al.  Permian Circulipuncturites discinisporis Labandeira, Wang, Zhang, Bek et Pfefferkorn gen. et spec. nov. (formerly Discinispora) from China, an ichnotaxon of a punch-and-sucking insect on Noeggerathialean spores , 2009 .

[86]  J. Hilton,et al.  Anatomically Preserved Pteridosperm Stems and Rachises from Permian Floras of China , 2009, International Journal of Plant Sciences.

[87]  C. Poulsen,et al.  Palaeoclimate across the Late Pennsylvanian–Early Permian tropical palaeolatitudes: A review of climate indicators, their distribution, and relation to palaeophysiographic climate factors , 2008 .

[88]  M. Avramenko Corrigendum , 2007 .

[89]  C. Labandeira,et al.  Minimal insect herbivory for the Lower Permian Coprolite Bone Bed site of north-central Texas, USA, and comparison to other Late Paleozoic floras , 2007 .

[90]  D. Vasilenko Feeding damage on upper Permian plants from the Sukhona River , 2007 .

[91]  C. Labandeira The four phases of plant-arthropod associations in deep time , 2006 .

[92]  H. Larsson,et al.  Permian tetrapods from the Sahara show climate-controlled endemism in Pangaea , 2005, Nature.

[93]  D. W. Kellogg,et al.  EVIDENCE OF ORIBATID MITE DETRITIVORY IN ANTARCTICA DURING THE LATE PALEOZOIC AND MESOZOIC , 2004, Journal of Paleontology.

[94]  J. Hilton,et al.  Foliar herbivory in Late Palaeozoic Cathaysian gigantopterids , 2003 .

[95]  J. Hilton,et al.  Callospermarion ovules from the Early Permian of northern China: palaeofloristic and palaeogeographic significance of callistophytalean seed-ferns in the Cathaysian flora , 2002 .

[96]  J. Kutzbach,et al.  Permian Phytogeographic Patterns and Climate Data/Model Comparisons , 2002, The Journal of Geology.

[97]  Cheng-Sen Li,et al.  Permineralized Cardiocarpalean Ovules in Wetland Vegetation from Early Permian Volcaniclastic Sediments of China , 2001 .

[98]  J. Kutzbach,et al.  Permian climates: Evaluating model predictions using global paleobotanical data , 1999 .

[99]  W. Yue,et al.  Chronostratigraphic Subdivision and Correlation of the Permian in China , 1999 .

[100]  Wang Zi-qiang GIgantonoclea: an enigmatic Permian plant from North China , 1999 .

[101]  C. Labandeira,et al.  Early Permian insect folivory on a gigantopterid-dominated riparian flora from north-central Texas , 1998 .

[102]  Jun Wang,et al.  Notes on the island distribution pattern of the Permian Cathaysian flora in China: an example of the application of the equilibrium theory of island biogeography in palaeobiogeography , 1998 .

[103]  Li Huamei,et al.  Paleo-latitude variation of Guizhou terrain from Devonian to Cretaceous , 1998 .

[104]  Conrad C. Labandeira,et al.  EARLY HISTORY OF ARTHROPOD AND VASCULAR PLANT ASSOCIATIONS , 1998 .

[105]  Li Xingxue The Cathaysian flora : An overview , 1996, Journal of Palaeosciences.

[106]  J. Visser Post-glacial Permian stratigraphy and geography of southern and central Africa: boundary conditions for climatic modelling , 1995 .

[107]  J. Kutzbach,et al.  Simulation of Late Permian Climate and Biomes with an Atmosphere-Ocean Model: Comparisons with Observations , 1993 .

[108]  R. Alexander,et al.  Fossil Evidence for Plant-Arthropod Interactions in the Palaeozoic and Mesozoic [and Discussion] , 1991 .

[109]  A. Srivastava Lower Barakar flora of Raniganj Coalfield and insect/plant relationship , 1987, Journal of Palaeosciences.

[110]  R. H. Whittaker,et al.  Dominance and Diversity in Land Plant Communities , 1965, Science.

[111]  C. Labandeira,et al.  A specialized feeding habit of Early Permian oribatid mites , 2015 .

[112]  V. Krassilov Permian Phytogeographic Zonality and Its Implications · for Continental Positions and Climates , 2009 .

[113]  V. Krassilov,et al.  first evidence of plant – arthropod interaction at the permian – triassic boundary in the volga Basin , european russia , 2009 .

[114]  Liu Lu-jun TEMPORAL AND SPATIAL DISTRIBUTION OF GIGANTOPTERIS NICOTIANAEFOLIA SCHENK AND CORRELATION OF RELATED FORMATIONS , 2009 .

[115]  C. Labandeira Silurian to Triassic plant and insect clades and their associations: new data, a review, and interpretations , 2006 .

[116]  M. A. Zharkov,et al.  Climate during Permian-Triassic Biosphere Reorganizations, Article 1: Climate of the Early Permian , 2002 .

[117]  O Hammer-Muntz,et al.  PAST: paleontological statistics software package for education and data analysis version 2.09 , 2001 .

[118]  D. Shcherbakov,et al.  Permian Faunas of Homoptera (Hemiptera) in Relation to Phytogeography and the Permo-Triassic Crisis , 2000 .

[119]  A. Drinnan,et al.  Fossil woods from the Upper Permian Bainmedart Coal Measures, northern Prince Charles Mountains, East Antarctica , 1997 .

[120]  D. Dilcher,et al.  The Xu-Huai-Yu Subprovince of the Cathaysian Floral Province , 1996 .

[121]  C. Wnuk The development of floristic provinciality during the Middle and Late Paleozoic , 1996 .