An Ontology of Preference-Based Multiobjective Metaheuristics

User preference integration is of great importance in multi-objective optimization, in particular in many objective optimization. Preferences have long been considered in traditional multicriteria decision making (MCDM) which is based on mathematical programming. Recently, it is integrated in multi-objective metaheuristics (MOMH), resulting in focus on preferred parts of the Pareto front instead of the whole Pareto front. The number of publications on preference-based multi-objective metaheuristics has increased rapidly over the past decades. There already exist various preference handling methods and MOMH methods, which have been combined in diverse ways. This article proposes to use the Web Ontology Language (OWL) to model and systematize the results developed in this field. A review of the existing work is provided, based on which an ontology is built and instantiated with state-of-the-art results. The OWL ontology is made public and open to future extension. Moreover, the usage of the ontology is exemplified for different use-cases, including querying for methods that match an engineering application, bibliometric analysis, checking existence of combinations of preference models and MOMH techniques, and discovering opportunities for new research and open research questions.

[1]  Qiu Fei-yue,et al.  Bipolar preferences dominance based evolutionary algorithm for many-objective optimization , 2012, 2012 IEEE Congress on Evolutionary Computation.

[2]  Heiner Stuckenschmidt,et al.  Handbook on Ontologies , 2004, Künstliche Intell..

[3]  Xiaodong Li,et al.  Reference Point-Based Particle Swarm Optimization Using a Steady-State Approach , 2008, SEAL.

[4]  C. Fonseca,et al.  GENETIC ALGORITHMS FOR MULTI-OBJECTIVE OPTIMIZATION: FORMULATION, DISCUSSION, AND GENERALIZATION , 1993 .

[5]  Ian C. Parmee,et al.  Use of Preferences for GA-based Multi-objective Optimisation , 1999, GECCO.

[6]  Carlos A. Coello Coello,et al.  Evolutionary multiobjective optimization using an outranking-based dominance generalization , 2010, Comput. Oper. Res..

[7]  N. F. Noy,et al.  Ontology Development 101: A Guide to Creating Your First Ontology , 2001 .

[8]  E. Zitzler,et al.  Directed Multiobjective Optimization Based on the Weighted Hypervolume Indicator , 2013 .

[9]  Antonio J. Nebro,et al.  Structural design using multi-objective metaheuristics. Comparative study and application to a real-world problem , 2016 .

[10]  Álvaro Gomes,et al.  A comparative study of different approaches using an outranking relation in a multi-objective evolutionary algorithm , 2013, Comput. Oper. Res..

[11]  Kalyanmoy Deb,et al.  Interactive evolutionary multi-objective optimization and decision-making using reference direction method , 2007, GECCO '07.

[12]  Fang Liu,et al.  A hybrid multiobjective immune algorithm with region preference for decision makers , 2010, IEEE Congress on Evolutionary Computation.

[13]  Qingfu Zhang,et al.  MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition , 2007, IEEE Transactions on Evolutionary Computation.

[14]  Andrzej Jaszkiewicz,et al.  The 'Light Beam Search' approach - an overview of methodology and applications , 1999, Eur. J. Oper. Res..

[15]  Matthias Ehrgott,et al.  Multiple criteria decision analysis: state of the art surveys , 2005 .

[16]  Heike Trautmann,et al.  Building and Using an Ontology of Preference-Based Multiobjective Evolutionary Algorithms , 2017, EMO.

[17]  Yutao Qi,et al.  Reservoir flood control operation using multi-objective evolutionary algorithm with decomposition and preferences , 2017, Appl. Soft Comput..

[18]  H. Trautmann,et al.  Preference-based Pareto optimization in certain and noisy environments , 2009 .

[19]  Kalyanmoy Deb,et al.  Light beam search based multi-objective optimization using evolutionary algorithms , 2007, 2007 IEEE Congress on Evolutionary Computation.

[20]  J. Branke,et al.  Interactive evolutionary multiobjective optimization driven by robust ordinal regression , 2010 .

[21]  Kaisa Miettinen,et al.  Nonlinear multiobjective optimization , 1998, International series in operations research and management science.

[22]  Heike Trautmann,et al.  Indicator-based Selection in Evolutionary Multiobjective Optimization Algorithms Based On the Desirability Index , 2013 .

[23]  Anne Auger,et al.  Articulating user preferences in many-objective problems by sampling the weighted hypervolume , 2009, GECCO.

[24]  Kaisa Miettinen,et al.  A Preference Based Interactive Evolutionary Algorithm for Multi-objective Optimization: PIE , 2011, EMO.

[25]  Heike Trautmann,et al.  Preference-Based Multi-Objective Particle Swarm Optimization Using Desirabilities , 2010, PPSN.

[26]  Hisao Ishibuchi,et al.  Preference-based NSGA-II for many-objective knapsack problems , 2014, 2014 Joint 7th International Conference on Soft Computing and Intelligent Systems (SCIS) and 15th International Symposium on Advanced Intelligent Systems (ISIS).

[27]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[28]  Lily Rachmawati,et al.  Incorporating the Notion of Relative Importance of Objectives in Evolutionary Multiobjective Optimization , 2010, IEEE Transactions on Evolutionary Computation.

[29]  Xiaodong Li,et al.  Reference point based multi-objective optimization through decomposition , 2012, 2012 IEEE Congress on Evolutionary Computation.

[30]  Heike Trautmann,et al.  Integration of Preferences in Hypervolume-Based Multiobjective Evolutionary Algorithms by Means of Desirability Functions , 2010, IEEE Transactions on Evolutionary Computation.

[31]  Carlos A. Coello Coello,et al.  g-dominance: Reference point based dominance for multiobjective metaheuristics , 2009, Eur. J. Oper. Res..

[32]  Eckart Zitzler,et al.  HypE: An Algorithm for Fast Hypervolume-Based Many-Objective Optimization , 2011, Evolutionary Computation.

[33]  Heike Trautmann,et al.  Preference Articulation by Means of the R2 Indicator , 2013, EMO.

[34]  Qingfu Zhang,et al.  Multiobjective evolutionary algorithms: A survey of the state of the art , 2011, Swarm Evol. Comput..

[35]  Mohammed Odeh,et al.  Metaheuristic Design Pattern: Preference , 2015, GECCO.

[36]  Salvatore Greco,et al.  Dominance-Based Rough Set Approach to Interactive Multiobjective Optimization , 2008, Multiobjective Optimization.

[37]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .

[38]  Thomas R. Gruber,et al.  A translation approach to portable ontology specifications , 1993, Knowl. Acquis..

[39]  Pekka Korhonen,et al.  A Visual Interactive Method for Solving the Multiple-Criteria Problem , 1986 .

[40]  Nicola Beume,et al.  SMS-EMOA: Multiobjective selection based on dominated hypervolume , 2007, Eur. J. Oper. Res..

[41]  Souhila Kaci,et al.  Using Comparative Preference Statements in Hypervolume-Based Interactive Multiobjective Optimization , 2014, LION.

[42]  J. Branke,et al.  Guidance in evolutionary multi-objective optimization , 2001 .

[43]  Carlos M. Fonseca,et al.  A Portfolio Optimization Approach to Selection in Multiobjective Evolutionary Algorithms , 2014, PPSN.

[44]  Murat Köksalan,et al.  An Interactive Territory Defining Evolutionary Algorithm: iTDEA , 2010, IEEE Transactions on Evolutionary Computation.

[45]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[46]  Daniel Angus,et al.  Crowding Population-based Ant Colony Optimisation for the Multi-objective Travelling Salesman Problem , 2007, 2007 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making.

[47]  Kalyanmoy Deb,et al.  An Interactive Evolutionary Multiobjective Optimization Method Based on Progressively Approximated Value Functions , 2010, IEEE Transactions on Evolutionary Computation.

[48]  Ricardo H. C. Takahashi,et al.  Decision-Maker Preference Modeling in Interactive Multiobjective Optimization , 2013, EMO.

[49]  Kaisa Miettinen,et al.  Introduction to Multiobjective Optimization: Interactive Approaches , 2008, Multiobjective Optimization.

[50]  Juergen Branke,et al.  MCDA and Multiobjective Evolutionary Algorithms , 2016 .

[51]  Kalyanmoy Deb,et al.  An interactive evolutionary multi-objective optimization algorithm with a limited number of decision maker calls , 2014, Eur. J. Oper. Res..

[52]  C.A. Coello Coello,et al.  MOPSO: a proposal for multiple objective particle swarm optimization , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[53]  Eduardo Fernández,et al.  Increasing selective pressure towards the best compromise in evolutionary multiobjective optimization: The extended NOSGA method , 2011, Inf. Sci..

[54]  Rubén Saborido,et al.  A preference-based evolutionary algorithm for multiobjective optimization: the weighting achievement scalarizing function genetic algorithm , 2015, J. Glob. Optim..

[55]  Kaisa Miettinen,et al.  An Interactive Evolutionary Multiobjective Optimization Method: Interactive WASF-GA , 2015, EMO.

[56]  Ki-Baek Lee,et al.  Multiobjective Particle Swarm Optimization With Preference-Based Sort and Its Application to Path Following Footstep Optimization for Humanoid Robots , 2013, IEEE Transactions on Evolutionary Computation.

[57]  David W. Corne,et al.  Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy , 2000, Evolutionary Computation.

[58]  Jürgen Branke,et al.  Consideration of Partial User Preferences in Evolutionary Multiobjective Optimization , 2008, Multiobjective Optimization.

[59]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[60]  Ye Tian,et al.  A Knee Point-Driven Evolutionary Algorithm for Many-Objective Optimization , 2015, IEEE Transactions on Evolutionary Computation.

[61]  Iryna Yevseyeva,et al.  A survey of diversity-oriented optimization , 2013 .

[62]  Murat Köksalan,et al.  An Interactive Evolutionary Metaheuristic for Multiobjective Combinatorial Optimization , 2003, Manag. Sci..

[63]  Thomas Bäck,et al.  Preference-based multiobjective optimization using truncated expected hypervolume improvement , 2016, 2016 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD).

[64]  Kalyanmoy Deb,et al.  An Interactive Evolutionary Multi-objective Optimization Method Based on Polyhedral Cones , 2010, LION.

[66]  Andrzej Jaszkiewicz,et al.  A Comparative Study of Multiple-Objective Metaheuristics on the Bi-Objective Set Covering Problem and the Pareto Memetic Algorithm , 2004, Ann. Oper. Res..

[67]  Lothar Thiele,et al.  A Preference-Based Evolutionary Algorithm for Multi-Objective Optimization , 2009, Evolutionary Computation.

[68]  Bernhard Sendhoff,et al.  Preference representation using Gaussian functions on a hyperplane in evolutionary multi-objective optimization , 2015, Soft Computing.

[69]  Xin Yao,et al.  Diversity Assessment in Many-Objective Optimization , 2017, IEEE Transactions on Cybernetics.

[70]  Christian Müller-Schloer,et al.  Semantic Multi-Criteria Decision Making SeMCDM , 2009, 2009 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making(MCDM).

[71]  Balakrishnan Chandrasekaran,et al.  What are ontologies, and why do we need them? , 1999, IEEE Intell. Syst..

[72]  Kalyanmoy Deb,et al.  An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Problems With Box Constraints , 2014, IEEE Transactions on Evolutionary Computation.

[73]  Tran Cao Son,et al.  The semantic web: a brain for humankind , 2001 .

[74]  Andrzej P. Wierzbicki,et al.  A parallel multiple reference point approach for multi-objective optimization , 2010, Eur. J. Oper. Res..

[75]  Kalyanmoy Deb,et al.  Finding a preferred diverse set of Pareto-optimal solutions for a limited number of function calls , 2012, 2012 IEEE Congress on Evolutionary Computation.

[76]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[77]  Bin Li,et al.  A Multi-Objective Hw-sw Co-Synthesis Algorithm Based on Quantum-Inspired Evolutionary Algorithm , 2008, Int. J. Comput. Intell. Appl..

[78]  Lothar Thiele,et al.  The Hypervolume Indicator Revisited: On the Design of Pareto-compliant Indicators Via Weighted Integration , 2007, EMO.

[79]  Kaisa Miettinen,et al.  An Interactive Simple Indicator-Based Evolutionary Algorithm (I-SIBEA) for Multiobjective Optimization Problems , 2015, EMO.

[80]  Vesa Ojalehto,et al.  Towards Automatic Testing of Reference Point Based Interactive Methods , 2016, PPSN.

[81]  Heike Trautmann,et al.  R2-EMOA: Focused Multiobjective Search Using R2-Indicator-Based Selection , 2013, LION.

[82]  Martin J. Oates,et al.  PESA-II: region-based selection in evolutionary multiobjective optimization , 2001 .

[83]  Peter J. Fleming,et al.  Genetic Algorithms for Multiobjective Optimization: FormulationDiscussion and Generalization , 1993, ICGA.

[84]  Michael T. M. Emmerich,et al.  Cone-Based Hypervolume Indicators: Construction, Properties, and Efficient Computation , 2013, EMO.

[85]  Michael T. M. Emmerich,et al.  A Theoretical Analysis of Curvature Based Preference Models , 2013, EMO.

[86]  Carlos A. Coello Coello,et al.  Handling preferences in evolutionary multiobjective optimization: a survey , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[87]  Yacov Y. Haimes,et al.  Multiobjective Decision Making: Theory and Methodology , 1983 .

[88]  Roberto Battiti,et al.  Brain-Computer Evolutionary Multiobjective Optimization: A Genetic Algorithm Adapting to the Decision Maker , 2010, IEEE Trans. Evol. Comput..

[89]  Lothar Thiele,et al.  On Set-Based Multiobjective Optimization , 2010, IEEE Transactions on Evolutionary Computation.

[90]  Jyrki Wallenius,et al.  Bibliometric Analysis of Multiple Criteria Decision Making/Multiattribute Utility Theory , 2008, MCDM.

[91]  Hartmut Schmeck,et al.  A Framework for Incorporating Trade-Off Information Using Multi-Objective Evolutionary Algorithms , 2010, PPSN.

[92]  Olga Kurasova,et al.  Synchronous R-NSGA-II: An Extended Preference-Based Evolutionary Algorithm for Multi-Objective Optimization , 2015, Informatica.

[93]  Jyrki Wallenius,et al.  Interactive evolutionary multi-objective optimization for quasi-concave preference functions , 2010, Eur. J. Oper. Res..

[94]  Qiang Zhang,et al.  An approach to evolutionary multi-objective optimization algorithm with preference , 2005, 2005 International Conference on Machine Learning and Cybernetics.

[95]  Carlos A. Coello Coello,et al.  Including preferences into a multiobjective evolutionary algorithm to deal with many-objective engineering optimization problems , 2014, Inf. Sci..

[96]  Dun-Wei Gong,et al.  Evolutionary algorithms with preference polyhedron for interval multi-objective optimization problems , 2013, Inf. Sci..

[97]  Ricardo H. C. Takahashi,et al.  INSPM: An interactive evolutionary multi-objective algorithm with preference model , 2014, Inf. Sci..

[98]  Peter J. Fleming,et al.  "Whatever Works Best for You"- A New Method for a Priori and Progressive Multi-objective Optimisation , 2013, EMO.

[99]  Álvaro Gomes,et al.  A hybrid evolutionary simulated annealing algorithm with incorporation of preferences , 2013, GECCO '13 Companion.

[100]  Khaled Ghédira,et al.  Searching for knee regions of the Pareto front using mobile reference points , 2011, Soft Comput..

[101]  Gurpreet Kaur,et al.  Evolutionary computation ontology: E-learning system , 2015, INFOCOM 2015.

[102]  Vimal L. Vachhani,et al.  Survey of multi objective evolutionary algorithms , 2015, 2015 International Conference on Circuits, Power and Computing Technologies [ICCPCT-2015].

[103]  Khaled Ghédira,et al.  The r-Dominance: A New Dominance Relation for Interactive Evolutionary Multicriteria Decision Making , 2010, IEEE Transactions on Evolutionary Computation.

[104]  Xiaodong Li,et al.  Integrating user preferences and decomposition methods for many-objective optimization , 2014, 2014 IEEE Congress on Evolutionary Computation (CEC).

[105]  Garrison W. Greenwood,et al.  Fitness Functions for Multiple Objective Optimization Problems: Combining Preferences with Pareto Rankings , 1996, FOGA.

[106]  Bernhard Sendhoff,et al.  Incorporation Of Fuzzy Preferences Into Evolutionary Multiobjective Optimization , 2002, GECCO.

[107]  Salvatore Greco,et al.  Interactive Evolutionary Multiobjective Optimization using Dominance-based Rough Set Approach , 2010, IEEE Congress on Evolutionary Computation.

[108]  Ian C. Parmee,et al.  Preferences and their application in evolutionary multiobjective optimization , 2002, IEEE Trans. Evol. Comput..

[109]  Torsten Bertram,et al.  Interactive evolutionary multiobjective optimization for hydraulic valve controller parameters , 2009, 2009 IEEE/ASME International Conference on Advanced Intelligent Mechatronics.

[110]  G. Derringer,et al.  Simultaneous Optimization of Several Response Variables , 1980 .

[111]  Joaquín Bautista,et al.  Interactive preferences in multiobjective ant colony optimisation for assembly line balancing , 2015, Soft Comput..

[112]  Khaled Ghédira,et al.  Searching for knee regions in multi-objective optimization using mobile reference points , 2010, SAC '10.

[113]  Carlos A. Coello Coello,et al.  Preference incorporation to solve many-objective airfoil design problems , 2011, 2011 IEEE Congress of Evolutionary Computation (CEC).

[114]  Lamjed Ben Said,et al.  Group Preference-based Evolutionary Multi-objective Optimization with Non-Equally Important Decision Makers: Application to the Portfolio Selection Problem , 2013 .

[115]  Ki-Baek Lee,et al.  Multi-objective particle swarm optimization with preference-based sorting , 2011, 2011 IEEE Congress of Evolutionary Computation (CEC).

[116]  Licheng Jiao,et al.  An r-dominance-based preference multi-objective optimization for many-objective optimization , 2017, Soft Comput..

[117]  Soon-Thiam Khu,et al.  An Investigation on Preference Order Ranking Scheme for Multiobjective Evolutionary Optimization , 2007, IEEE Transactions on Evolutionary Computation.

[118]  Fang Liu,et al.  MOEA/D with biased weight adjustment inspired by user preference and its application on multi-objective reservoir flood control problem , 2016, Soft Comput..

[119]  Jürgen Branke,et al.  Using Choquet integral as preference model in interactive evolutionary multiobjective optimization , 2016, Eur. J. Oper. Res..

[120]  Kalyanmoy Deb,et al.  Guest Editorial Special Issue on Preference-Based Multiobjective Evolutionary Algorithms , 2010, IEEE Trans. Evol. Comput..

[121]  Eduardo Fernández,et al.  Preference Incorporation into Evolutionary Multiobjective Optimization Using a Multi-Criteria Evaluation Method , 2014, Recent Advances on Hybrid Approaches for Designing Intelligent Systems.

[122]  E. F. Khor,et al.  An Evolutionary Algorithm with Advanced Goal and Priority Specification for Multi-objective Optimization , 2011, J. Artif. Intell. Res..

[123]  Mehrdad Tamiz,et al.  Multi-objective meta-heuristics: An overview of the current state-of-the-art , 2002, Eur. J. Oper. Res..

[124]  Peter J. Fleming,et al.  Preference-Inspired Coevolutionary Algorithms for Many-Objective Optimization , 2013, IEEE Transactions on Evolutionary Computation.

[125]  A. Jaszkiewicz,et al.  Interactive multiobjective optimization with the Pareto memetic algorithm , 2007 .

[126]  Yang Dong Clone Selection Algorithm to Solve Preference Multi-Objective Optimization , 2010 .

[127]  Carlos A. Coello Coello,et al.  Goal-constraint: Incorporating preferences through an evolutionary ε-constraint based method , 2013, 2013 IEEE Congress on Evolutionary Computation.

[128]  Kalyanmoy Deb,et al.  Reference point based multi-objective optimization using evolutionary algorithms , 2006, GECCO.

[129]  Iryna Yevseyeva,et al.  On Reference Point Free Weighted Hypervolume Indicators based on Desirability Functions and their Probabilistic Interpretation , 2014 .

[130]  Xiaodong Li,et al.  Using a distance metric to guide PSO algorithms for many-objective optimization , 2009, GECCO.

[131]  Eun-Soo Kim,et al.  Preference-Based Solution Selection Algorithm for Evolutionary Multiobjective Optimization , 2012, IEEE Transactions on Evolutionary Computation.

[132]  Frank Neumann,et al.  Weighted preferences in evolutionary multi-objective optimization , 2013, Int. J. Mach. Learn. Cybern..

[133]  Andrzej P. Wierzbicki,et al.  The Use of Reference Objectives in Multiobjective Optimization , 1979 .

[134]  Murat Köksalan,et al.  A Territory Defining Multiobjective Evolutionary Algorithms and Preference Incorporation , 2010, IEEE Transactions on Evolutionary Computation.

[135]  Jing Liu,et al.  A preference multi-objective optimization based on adaptive rank clone and differential evolution , 2013, Natural Computing.

[136]  Kalyanmoy Deb,et al.  Integrating User Preferences into Evolutionary Multi-Objective Optimization , 2005 .

[137]  Lily Rachmawati,et al.  Preference Incorporation in Multi-objective Evolutionary Algorithms: A Survey , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[138]  Kalyanmoy Deb,et al.  A review of hybrid evolutionary multiple criteria decision making methods , 2014, 2014 IEEE Congress on Evolutionary Computation (CEC).

[139]  Siddharth,et al.  Enriching the knowledgebase using unification techniques , 2012 .

[140]  Bernhard Sendhoff,et al.  A Reference Vector Guided Evolutionary Algorithm for Many-Objective Optimization , 2016, IEEE Transactions on Evolutionary Computation.

[141]  Bernhard Sendhoff,et al.  Voronoi-based estimation of distribution algorithm for multi-objective optimization , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[142]  Xiaodong Li,et al.  A new performance metric for user-preference based multi-objective evolutionary algorithms , 2013, 2013 IEEE Congress on Evolutionary Computation.

[143]  Murat Köksalan,et al.  An Evolutionary Metaheuristic for Approximating Preference-Nondominated Solutions , 2007, INFORMS J. Comput..

[144]  Marco Laumanns,et al.  SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .

[145]  Jürgen Branke,et al.  Learning Value Functions in Interactive Evolutionary Multiobjective Optimization , 2015, IEEE Transactions on Evolutionary Computation.

[146]  Pratyush Sen,et al.  Directed Multiple Objective search of design spaces using Genetic Algorithms and neural networks , 1999 .

[147]  Thomas H. Davenport,et al.  Book review:Working knowledge: How organizations manage what they know. Thomas H. Davenport and Laurence Prusak. Harvard Business School Press, 1998. $29.95US. ISBN 0‐87584‐655‐6 , 1998 .

[148]  Kalyanmoy Deb,et al.  A Hybrid Framework for Evolutionary Multi-Objective Optimization , 2013, IEEE Transactions on Evolutionary Computation.

[149]  Nicholas J. Bowring,et al.  A novel preference articulation operator for the Evolutionary Multi-Objective Optimisation of classifiers in concealed weapons detection , 2015, Inf. Sci..

[150]  Marouane Kessentini,et al.  Chapter Four - Preference Incorporation in Evolutionary Multiobjective Optimization: A Survey of the State-of-the-Art , 2015, Adv. Comput..

[151]  Günter Rudolph,et al.  An Aspiration Set EMOA Based on Averaged Hausdorff Distances , 2014, LION.

[152]  Qingfu Zhang,et al.  Interactive MOEA/D for multi-objective decision making , 2011, GECCO '11.