Photo-FETs: Phototransistors Enabled by 2D and 0D Nanomaterials

The large diversity of applications in our daily lives that rely on photodetection technology requires photodetectors with distinct properties. The choice of an adequate photodetecting system depends on its application, where aspects such as spectral selectivity, speed, and sensitivity play a critical role. High-sensitivity photodetection covering a large spectral range from the UV to IR is dominated by photodiodes. To overcome existing limitations in sensitivity and cost of state-of-the-art systems, new device architectures and material systems are needed with low-cost fabrication and high performance. Low-dimensional nanomaterials (0D, 1D, 2D) are promising candidates with many unique electrical and optical properties and additional functionalities such as flexibility and transparency. In this Perspective, the physical mechanism of photo-FETs (field-effect transistors) is described and recent advances in the field of low-dimensional photo-FETs and hybrids thereof are discussed. Several requirements for ...

[1]  Fengnian Xia,et al.  Strong light–matter coupling in two-dimensional atomic crystals , 2014, Nature Photonics.

[2]  G. Konstantatos,et al.  Strategies for the Controlled Electronic Doping of Colloidal Quantum Dot Solids. , 2016, Chemphyschem : a European journal of chemical physics and physical chemistry.

[3]  A. Alivisatos Perspectives on the Physical Chemistry of Semiconductor Nanocrystals , 1996 .

[4]  Yong-Young Noh,et al.  Organic Light Detectors: Photodiodes and Phototransistors , 2013, Advanced materials.

[5]  Hideyuki Tanaka,et al.  Air-Stable and Solution-Processable Perovskite Photodetectors for Solar-Blind UV and Visible Light. , 2015, The journal of physical chemistry letters.

[6]  Band-like transport in high mobility unencapsulated single-layer MoS 2 transistors , 2013, 1304.5567.

[7]  M. Steigerwald,et al.  Mirror-image photoswitching of individual single-walled carbon nanotube transistors coated with titanium dioxide. , 2009, Angewandte Chemie.

[8]  Stefan A Maier,et al.  Two-dimensional crystals: managing light for optoelectronics. , 2013, ACS nano.

[9]  H. Ohta,et al.  Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors , 2004, Nature.

[10]  F. Schwierz Graphene transistors. , 2010, Nature nanotechnology.

[11]  Moungi G. Bawendi,et al.  Improved performance and stability in quantum dot solar cells through band alignment engineering , 2014, Nature materials.

[12]  Yong Cao,et al.  Simultaneous Enhancement of Open‐Circuit Voltage, Short‐Circuit Current Density, and Fill Factor in Polymer Solar Cells , 2011, Advanced materials.

[13]  Yanjun Fang,et al.  Resolving Weak Light of Sub‐picowatt per Square Centimeter by Hybrid Perovskite Photodetectors Enabled by Noise Reduction , 2015, Advanced materials.

[14]  G. Konstantatos,et al.  Hybrid graphene-quantum dot phototransistors with ultrahigh gain. , 2011, Nature nanotechnology.

[15]  Andres Castellanos-Gomez,et al.  Photocurrent generation with two-dimensional van der Waals semiconductors. , 2015, Chemical Society reviews.

[16]  T. Fromherz,et al.  CMOS-compatible graphene photodetector covering all optical communication bands , 2013, 1302.3854.

[17]  Lei Wang,et al.  Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. , 2015, Nature nanotechnology.

[18]  Klaus Kern,et al.  Contact and edge effects in graphene devices. , 2008, Nature nanotechnology.

[19]  A. Ramasubramaniam Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides , 2012 .

[20]  Laura M. Herz,et al.  Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber , 2013, Science.

[21]  A. Rose Recombination Processes in Insulators and Semiconductors , 1955 .

[22]  Lain-Jong Li,et al.  Monolayer MoSe2 grown by chemical vapor deposition for fast photodetection. , 2014, ACS nano.

[23]  Arif D. Sheikh,et al.  Ambipolar solution-processed hybrid perovskite phototransistors , 2015, Nature Communications.

[24]  M. Terrones,et al.  Photosensor Device Based on Few‐Layered WS2 Films , 2013 .

[25]  Wei Chen,et al.  Role of metal contacts in high-performance phototransistors based on WSe2 monolayers. , 2014, ACS nano.

[26]  P. Gopalan,et al.  Optically modulated conduction in chromophore-functionalized single-wall carbon nanotubes. , 2007, Physical review letters.

[27]  Xiaosheng Fang,et al.  Nanostructured Photodetectors: From Ultraviolet to Terahertz , 2016, Advanced materials.

[28]  J. Appenzeller,et al.  Analysing black phosphorus transistors using an analytic Schottky barrier MOSFET model , 2015, Nature Communications.

[29]  Frank H. L. Koppens,et al.  Integrating an electrically active colloidal quantum dot photodiode with a graphene phototransistor , 2016, Nature Communications.

[30]  Jiwoong Park,et al.  Imaging of photocurrent generation and collection in single-layer graphene. , 2009, Nano letters.

[31]  R. Sankar,et al.  High performance and bendable few-layered InSe photodetectors with broad spectral response. , 2014, Nano letters.

[32]  A. Castellanos-Gómez,et al.  Black Phosphorus: Narrow Gap, Wide Applications. , 2015, The journal of physical chemistry letters.

[33]  Jr-Hau He,et al.  Few-Layer MoS2 with high broadband Photogain and fast optical switching for use in harsh environments. , 2013, ACS nano.

[34]  Jian-Bai Xia,et al.  Photoresponsive and Gas Sensing Field-Effect Transistors based on Multilayer WS2 Nanoflakes , 2014, Scientific Reports.

[35]  Matthew T. Cole,et al.  Flexible Electronics: The Next Ubiquitous Platform , 2012, Proceedings of the IEEE.

[36]  Deji Akinwande,et al.  High-performance, highly bendable MoS2 transistors with high-k dielectrics for flexible low-power systems. , 2013, ACS nano.

[37]  Deji Akinwande,et al.  Two-dimensional flexible nanoelectronics , 2014, Nature Communications.

[38]  Elucidating the Photoresponse of Ultrathin MoS2 Field-Effect Transistors by Scanning Photocurrent Microscopy , 2013, 1307.5032.

[39]  Kenneth L. Shepard,et al.  Chip-integrated ultrafast graphene photodetector with high responsivity , 2013, Nature Photonics.

[40]  Wilman Tsai,et al.  Chloride molecular doping technique on 2D materials: WS2 and MoS2. , 2014, Nano letters.

[41]  F. Rana,et al.  Ultrafast dynamics of defect-assisted electron-hole recombination in monolayer MoS2. , 2014, Nano letters.

[42]  Tania Lasanta,et al.  Interface Engineering in Hybrid Quantum Dot–2D Phototransistors , 2016 .

[43]  Giuseppe Iannaccone,et al.  Electronics based on two-dimensional materials. , 2014, Nature nanotechnology.

[44]  Jong-Hyun Ahn,et al.  High‐Performance Perovskite–Graphene Hybrid Photodetector , 2015, Advanced materials.

[45]  A. Sandhu,et al.  High photosensitivity few-layered MoSe2 back-gated field-effect phototransistors , 2014, Nanotechnology.

[46]  T. Bendikov,et al.  Enhancing the tunability of the open-circuit voltage of hybrid photovoltaics with mixed molecular monolayers. , 2014, ACS applied materials & interfaces.

[47]  Edward H. Sargent,et al.  Solution-Processed Quantum Dot Photodetectors , 2009, Proceedings of the IEEE.

[48]  R. Curry,et al.  Lead sulphide nanocrystal photodetector technologies , 2016, Nature Photonics.

[49]  Gyuchull Han,et al.  Giant Photoamplification in Indirect‐Bandgap Multilayer MoS2 Phototransistors with Local Bottom‐Gate Structures , 2015, Advanced materials.

[50]  Zhenan Bao,et al.  Significant Enhancement of Infrared Photodetector Sensitivity Using a Semiconducting Single‐Walled Carbon Nanotube/C60 Phototransistor , 2015, Advanced materials.

[51]  Ajay K. Pandey,et al.  Organic Photodiodes: The Future of Full Color Detection and Image Sensing , 2016, Advanced materials.

[52]  Andras Kis,et al.  Single-layer MoS2 electronics. , 2015, Accounts of chemical research.

[53]  F. Xia,et al.  Ultrafast graphene photodetector , 2009, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[54]  Ali Javey,et al.  Near‐Unity Photoluminescence Quantum Yield in MoS2. , 2016 .

[55]  Yu-Lun Chueh,et al.  Ultrahigh-Gain Photodetectors Based on Atomically Thin Graphene-MoS2 Heterostructures , 2014, Scientific Reports.

[56]  Marco Bernardi,et al.  Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials. , 2013, Nano letters.

[57]  S.Heinze,et al.  Carbon Nanotubes as Schottky Barrier Transistors , 2002, cond-mat/0207397.

[58]  Yang Yang,et al.  Solution-processed hybrid perovskite photodetectors with high detectivity , 2014, Nature Communications.

[59]  David H Waldeck,et al.  Carbon nanotube-polymer nanocomposite infrared sensor. , 2008, Nano letters.

[60]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[61]  H. Schmidt,et al.  Electronic Transport Properties of Transition Metal Dichalcogenide Field‐Effect Devices: Surface and Interface Effects , 2015 .

[62]  Haixin Chang,et al.  Graphene and graphene-like two-dimensional materials in photodetection: mechanisms and methodology. , 2014, ACS nano.

[63]  Judy Z. Wu,et al.  Extraordinary photocurrent harvesting at type-II heterojunction interfaces: toward high detectivity carbon nanotube infrared detectors. , 2012, Nano letters.

[64]  Andras Kis,et al.  Ultrasensitive photodetectors based on monolayer MoS2. , 2013, Nature nanotechnology.

[65]  T. Mueller,et al.  Optoelectronic Devices Based on Atomically Thin Transition Metal Dichalcogenides , 2016 .

[66]  P. Avouris,et al.  Photodetectors based on graphene, other two-dimensional materials and hybrid systems. , 2014, Nature nanotechnology.

[67]  Byung-Ryool Hyun,et al.  Photogenerated exciton dissociation in highly coupled lead salt nanocrystal assemblies. , 2010, Nano letters.

[68]  Bryan M. Wong,et al.  Color Detection Using Chromophore-Nanotube Hybrid Devices , 2009, Nano letters.

[69]  Edward H. Sargent,et al.  Planar-integrated single-crystalline perovskite photodetectors , 2015, Nature Communications.

[70]  Lifeng Wang,et al.  Synthesis of few-layer GaSe nanosheets for high performance photodetectors. , 2012, ACS nano.

[71]  M. Bawendi,et al.  A colloidal quantum dot spectrometer , 2015, Nature.

[72]  J. F. Stoddart,et al.  Light‐Induced Charge Transfer in Pyrene/CdSe‐SWNT Hybrids , 2008 .

[73]  Wei Liu,et al.  Role of metal contacts in designing high-performance monolayer n-type WSe2 field effect transistors. , 2013, Nano letters.

[74]  Edward H Sargent,et al.  Photojunction field-effect transistor based on a colloidal quantum dot absorber channel layer. , 2015, ACS nano.

[75]  Phaedon Avouris,et al.  Carbon-nanotube photonics and optoelectronics , 2008 .

[76]  Large and tunable photothermoelectric effect in single-layer MoS2. , 2013, Nano letters.

[77]  J. Lou,et al.  Chemical vapor deposition of thin crystals of layered semiconductor SnS2 for fast photodetection application. , 2015, Nano letters.

[78]  S. Wind,et al.  Field-modulated carrier transport in carbon nanotube transistors. , 2002, Physical review letters.

[79]  R Martel,et al.  Carbon nanotubes as schottky barrier transistors. , 2002, Physical review letters.

[80]  Paul L. Burn,et al.  Filterless narrowband visible photodetectors , 2015, Nature Photonics.

[81]  Gerasimos Konstantatos,et al.  Highly Sensitive, Encapsulated MoS2 Photodetector with Gate Controllable Gain and Speed. , 2015, Nano letters.

[82]  R. Gorbachev Van der Waals heterostructures , 2014, Nature Reviews Methods Primers.

[83]  Thomas Bein,et al.  A Long-Term View on Perovskite Optoelectronics. , 2016, Accounts of chemical research.

[84]  Xianglong Li,et al.  Tailored single-walled carbon nanotube--CdS nanoparticle hybrids for tunable optoelectronic devices. , 2010, ACS nano.

[85]  Thomas Mueller,et al.  Mechanisms of photoconductivity in atomically thin MoS2. , 2014, Nano letters.

[86]  H. Schmidt,et al.  Large thermoelectricity via variable range hopping in chemical vapor deposition grown single-layer MoS2. , 2014, Nano letters.

[87]  Gautam Gupta,et al.  Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. , 2014, Nature materials.

[88]  Soon Cheol Hong,et al.  High‐Detectivity Multilayer MoS2 Phototransistors with Spectral Response from Ultraviolet to Infrared , 2012, Advanced materials.

[89]  Kai Xiao,et al.  Highly responsive ultrathin GaS nanosheet photodetectors on rigid and flexible substrates. , 2013, Nano letters.

[90]  Lain-Jong Li,et al.  Heterostructured WS2/CH3NH3PbI3 Photoconductors with Suppressed Dark Current and Enhanced Photodetectivity , 2016, Advanced materials.

[91]  Yi Shi,et al.  Planar carbon nanotube–graphene hybrid films for high-performance broadband photodetectors , 2015, Nature Communications.

[92]  Du Xiang,et al.  Colossal Ultraviolet Photoresponsivity of Few-Layer Black Phosphorus. , 2015, ACS nano.

[93]  M. Radosavljevic,et al.  Tunneling versus thermionic emission in one-dimensional semiconductors. , 2004, Physical review letters.

[94]  Dongxiang Zhou,et al.  Physically Flexible, Rapid‐Response Gas Sensor Based on Colloidal Quantum Dot Solids , 2014, Advanced materials.

[95]  A. Fratalocchi,et al.  Achieving ultrahigh carrier mobility and photo-responsivity in solution-processed perovskite/carbon nanotubes phototransistors , 2015, 1512.03893.

[96]  Eun Kyung Lee,et al.  Full-colour quantum dot displays fabricated by transfer printing , 2011 .

[97]  Min-Chul Park,et al.  Ultrasensitive PbS quantum-dot-sensitized InGaZnO hybrid photoinverter for near-infrared detection and imaging with high photogain , 2016 .

[98]  Yong‐Hyun Kim,et al.  Steric-hindrance-driven shape transition in PbS quantum dots: understanding size-dependent stability. , 2013, Journal of the American Chemical Society.

[99]  Zhixian Zhou,et al.  Low-Resistance 2D/2D Ohmic Contacts: A Universal Approach to High-Performance WSe2, MoS2, and MoSe2 Transistors. , 2016, Nano letters.

[100]  Arindam Ghosh,et al.  Microscopic origin of low frequency noise in MoS2 field-effect transistors , 2014 .

[101]  Bin Yu,et al.  Extraordinary photoresponse in two-dimensional In(2)Se(3) nanosheets. , 2014, ACS nano.

[102]  P. Jeon,et al.  Trap density probing on top-gate MoS₂ nanosheet field-effect transistors by photo-excited charge collection spectroscopy. , 2015, Nanoscale.

[103]  Likai Li,et al.  Black phosphorus field-effect transistors. , 2014, Nature nanotechnology.

[104]  E. Hwang,et al.  High-performance photocurrent generation from two-dimensional WS2 field-effect transistors , 2014 .

[105]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[106]  Gabriele Navickaite,et al.  Hybrid 2D–0D MoS2–PbS Quantum Dot Photodetectors , 2015, Advanced materials.

[107]  M. Lundstrom,et al.  Ballistic carbon nanotube field-effect transistors , 2003, Nature.

[108]  C. Gu,et al.  CVD synthesis of large-area, highly crystalline MoSe2 atomic layers on diverse substrates and application to photodetectors. , 2014, Nanoscale.

[109]  H. Snaith Perovskites: The Emergence of a New Era for Low-Cost, High-Efficiency Solar Cells , 2013 .

[110]  Oleksandr Voznyy,et al.  Engineering colloidal quantum dot solids within and beyond the mobility-invariant regime , 2014, Nature Communications.

[111]  Joachim Knoch,et al.  Physics of ultrathin-body silicon-on-insulator Schottky-barrier field-effect transistors , 2007 .

[112]  Walter R. L. Lambrecht,et al.  Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS 2 , 2012 .

[113]  Nripan Mathews,et al.  Low-temperature solution-processed wavelength-tunable perovskites for lasing. , 2014, Nature materials.

[114]  Zeger Hens,et al.  Size-tunable, bright, and stable PbS quantum dots: a surface chemistry study. , 2011, ACS nano.

[115]  D. Tsai,et al.  Trilayered MoS$_{\bf 2}$ Metal –Semiconductor–Metal Photodetectors: Photogain and Radiation Resistance , 2014, IEEE Journal of Selected Topics in Quantum Electronics.

[116]  F. Xia,et al.  Photocurrent imaging and efficient photon detection in a graphene transistor. , 2009, Nano letters.

[117]  Nathan Youngblood,et al.  Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current , 2014, Nature Photonics.

[118]  F. Xia,et al.  Graphene photodetectors for high-speed optical communications , 2010, 1009.4465.

[119]  G. Steele,et al.  Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. , 2014, Nano letters.

[120]  Youngki Yoon,et al.  How good can monolayer MoS₂ transistors be? , 2011, Nano letters.

[121]  J. Appenzeller,et al.  High performance multilayer MoS2 transistors with scandium contacts. , 2013, Nano letters.

[122]  F. Miao,et al.  Hopping transport through defect-induced localized states in molybdenum disulphide , 2013, Nature Communications.

[123]  S. Min,et al.  MoS₂ nanosheet phototransistors with thickness-modulated optical energy gap. , 2012, Nano letters.

[124]  E. Sargent,et al.  Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals , 2015, Science.

[125]  Hua Xu,et al.  High responsivity and gate tunable graphene-MoS2 hybrid phototransistor. , 2014, Small.

[126]  Ji Hoon Kim,et al.  Wearable red–green–blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing , 2015, Nature Communications.

[127]  Hua Zhang,et al.  Single-layer MoS2 phototransistors. , 2012, ACS nano.

[128]  Xu Cui,et al.  Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures. , 2013, ACS nano.

[129]  Junichiro Kono,et al.  Uncooled Carbon Nanotube Photodetectors , 2015 .

[130]  Qingfeng Dong,et al.  Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination , 2015, Nature Photonics.

[131]  Andre K. Geim,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[132]  V. Fal’ko,et al.  High-sensitivity photodetectors based on multilayer GaTe flakes. , 2014, ACS nano.

[133]  P. Ajayan,et al.  Evolution of the electronic band structure and efficient photo-detection in atomic layers of InSe. , 2014, ACS nano.

[134]  Balázs,et al.  Colloidal quantum dot solids , 2018 .

[135]  Feng Yan,et al.  Infrared Photodetectors Based on CVD‐Grown Graphene and PbS Quantum Dots with Ultrahigh Responsivity , 2012, Advanced materials.

[136]  P. Guyot-Sionnest,et al.  Mid-infrared HgTe colloidal quantum dot photodetectors , 2011 .

[137]  J. Shan,et al.  Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides , 2016, Nature Photonics.

[138]  Lain-Jong Li,et al.  High‐Gain Phototransistors Based on a CVD MoS2 Monolayer , 2013, Advanced materials.

[139]  Jeffrey Bokor,et al.  Short-channel transistors constructed with solution-processed carbon nanotubes. , 2013, ACS nano.

[140]  Kazuhito Hashimoto,et al.  Tailoring organic heterojunction interfaces in bilayer polymer photovoltaic devices. , 2011, Nature materials.

[141]  M. Fuhrer,et al.  Extraordinary Mobility in Semiconducting Carbon Nanotubes , 2004 .

[142]  Gregory D. Scholes,et al.  Colloidal PbS Nanocrystals with Size‐Tunable Near‐Infrared Emission: Observation of Post‐Synthesis Self‐Narrowing of the Particle Size Distribution , 2003 .

[143]  B. Radisavljevic,et al.  Mobility engineering and a metal-insulator transition in monolayer MoS₂. , 2013, Nature materials.

[144]  Arindam Ghosh,et al.  Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices. , 2013, Nature nanotechnology.