Assembly of Lamina-Specific Neuronal Connections by Slit Bound to Type IV Collagen

[1]  Topoisomerase IIβ is required for lamina-specific targeting of retinal ganglion cell axons and dendrites , 2011, Development.

[2]  Herwig Baier,et al.  Characterization of Genetically Targeted Neuron Types in the Zebrafish Optic Tectum , 2011, Front. Neural Circuits.

[3]  Tudor C. Badea,et al.  Transmembrane semaphorin signaling controls laminar stratification in the mammalian retina , 2010, Nature.

[4]  Ethan K. Scott,et al.  Focusing on optic tectum circuitry through the lens of genetics , 2010, BMC Biology.

[5]  H. Baier,et al.  Molecular and cellular mechanisms of lamina-specific axon targeting. , 2010, Cold Spring Harbor perspectives in biology.

[6]  D. Fan,et al.  MiR-218 Inhibits Invasion and Metastasis of Gastric Cancer by Targeting the Robo1 Receptor , 2010, PLoS genetics.

[7]  B. Dickson,et al.  Distinct Protein Domains and Expression Patterns Confer Divergent Axon Guidance Functions for Drosophila Robo Receptors , 2010, Cell.

[8]  Herwig Baier,et al.  Optical control of zebrafish behavior with halorhodopsin , 2009, Proceedings of the National Academy of Sciences.

[9]  Masahito Yamagata,et al.  Many paths to synaptic specificity. , 2009, Annual review of cell and developmental biology.

[10]  Ethan K. Scott,et al.  The cellular architecture of the larval zebrafish tectum , as revealed by Gal 4 enhancer trap lines , 2022 .

[11]  W. Driever,et al.  Netrin-DCC, Robo-Slit, and Heparan Sulfate Proteoglycans Coordinate Lateral Positioning of Longitudinal Dopaminergic Diencephalospinal Axons , 2009, The Journal of Neuroscience.

[12]  M. Feller,et al.  Genetic Identification of an On-Off Direction- Selective Retinal Ganglion Cell Subtype Reveals a Layer-Specific Subcortical Map of Posterior Motion , 2009, Neuron.

[13]  Michael R. Taylor,et al.  Hardwiring of fine synaptic layers in the zebrafish visual pathway , 2008, Neural Development.

[14]  Hilary L. Ashe,et al.  Type IV collagens regulate BMP signalling in Drosophila , 2008, Nature.

[15]  A. Huberman,et al.  Architecture and Activity-Mediated Refinement of Axonal Projections from a Mosaic of Genetically Identified Retinal Ganglion Cells , 2008, Neuron.

[16]  M. Tessier-Lavigne,et al.  Alternative Splicing of the Robo3 Axon Guidance Receptor Governs the Midline Switch from Attraction to Repulsion , 2008, Neuron.

[17]  Herwig Baier,et al.  Retinotopic order in the absence of axon competition , 2008, Nature.

[18]  Ryan M. Anderson,et al.  Nitroreductase-mediated cell/tissue ablation in zebrafish: a spatially and temporally controlled ablation method with applications in developmental and regeneration studies , 2008, Nature Protocols.

[19]  Herwig Baier,et al.  Lamina-specific axonal projections in the zebrafish tectum require the type IV collagen Dragnet , 2007, Nature Neuroscience.

[20]  H. Baier,et al.  Slit1a Inhibits Retinal Ganglion Cell Arborization and Synaptogenesis via Robo2-Dependent and -Independent Pathways , 2007, Neuron.

[21]  Herwig Baier,et al.  Transactivation from Gal4-VP16 transgenic insertions for tissue-specific cell labeling and ablation in zebrafish. , 2007, Developmental biology.

[22]  Herwig Baier,et al.  Targeting neural circuitry in zebrafish using GAL4 enhancer trapping , 2007, Nature Methods.

[23]  Yassir A. Ahmed,et al.  A Molecular Mechanism for the Heparan Sulfate Dependence of Slit-Robo Signaling* , 2006, Journal of Biological Chemistry.

[24]  M. Götz,et al.  Basement membrane attachment is dispensable for radial glial cell fate and for proliferation, but affects positioning of neuronal subtypes , 2006, Development.

[25]  Cem Kuscu,et al.  Alternatively spliced Robo2 isoforms in zebrafish and rat , 2006, Development Genes and Evolution.

[26]  Dennis P Wall,et al.  Heparan sulfate proteoglycans and the emergence of neuronal connectivity , 2006, Current Opinion in Neurobiology.

[27]  P. May The mammalian superior colliculus: laminar structure and connections. , 2006, Progress in brain research.

[28]  W. Harris,et al.  Influences on neural lineage and mode of division in the zebrafish retina in vivo , 2005, The Journal of cell biology.

[29]  G. Lemke,et al.  Retinotectal mapping: new insights from molecular genetics. , 2005, Annual review of cell and developmental biology.

[30]  Herwig Baier,et al.  A GFP-based genetic screen reveals mutations that disrupt the architecture of the zebrafish retinotectal projection , 2005, Development.

[31]  J. N. Kay,et al.  Staggered cell-intrinsic timing of ath5 expression underlies the wave of ganglion cell neurogenesis in the zebrafish retina , 2005, Development.

[32]  C. Nüsslein-Volhard,et al.  Axon Sorting in the Optic Tract Requires HSPG Synthesis by ext2 (dackel) and extl3 (boxer) , 2004, Neuron.

[33]  H. Okamoto,et al.  Involvement of Islet-2 in the Slit signaling for axonal branching and defasciculation of the sensory neurons in embryonic zebrafish , 2004, Mechanisms of Development.

[34]  D. V. Vactor,et al.  Axonal Heparan Sulfate Proteoglycans Regulate the Distribution and Efficiency of the Repellent Slit during Midline Axon Guidance , 2004, Current Biology.

[35]  H. Jäckle,et al.  Heparan Sulfate Proteoglycan Syndecan Promotes Axonal and Myotube Guidance by Slit/Robo Signaling , 2004, Current Biology.

[36]  M. Tessier-Lavigne,et al.  Recognition of the Neural Chemoattractant Netrin-1 by Integrins α6β4 and α3β1 Regulates Epithelial Cell Adhesion and Migration , 2003 .

[37]  Pasko Rakic,et al.  Elusive radial glial cells: Historical and evolutionary perspective , 2003, Glia.

[38]  W. Shoji,et al.  Transmembrane Sema4E Guides Branchiomotor Axons to Their Targets in Zebrafish , 2003, The Journal of Neuroscience.

[39]  Angel Amores,et al.  Regulatory roles of conserved intergenic domains in vertebrate Dlx bigene clusters. , 2003, Genome research.

[40]  Geoffrey J. Goodhill,et al.  A Theoretical Model of Axon Guidance by the Robo Code , 2003, Neural Computation.

[41]  M. Tessier-Lavigne,et al.  Recognition of the neural chemoattractant Netrin-1 by integrins alpha6beta4 and alpha3beta1 regulates epithelial cell adhesion and migration. , 2003, Developmental cell.

[42]  W. Halfter,et al.  A Critical Function of the Pial Basement Membrane in Cortical Histogenesis , 2002, The Journal of Neuroscience.

[43]  Carol A. Mason,et al.  Slit1 and Slit2 Cooperate to Prevent Premature Midline Crossing of Retinal Axons in the Mouse Visual System , 2002, Neuron.

[44]  Chi-Bin Chien,et al.  Pathfinding and Error Correction by Retinal Axons The Role of astray/robo2 , 2002, Neuron.

[45]  Huaiyu Hu Cell-surface heparan sulfate is involved in the repulsive guidance activities of Slit2 protein , 2001, Nature Neuroscience.

[46]  C. Chien,et al.  Cloning and expression of three zebrafish roundabout homologs suggest roles in axon guidance and cell migration , 2001, Developmental dynamics : an official publication of the American Association of Anatomists.

[47]  S. Fraser,et al.  Tracing transgene expression in living zebrafish embryos. , 2001, Developmental biology.

[48]  J. N. Kay,et al.  Retinal Ganglion Cell Genesis Requires lakritz, a Zebrafish atonal Homolog , 2001, Neuron.

[49]  C. Chien,et al.  astray, a Zebrafish roundabout Homolog Required for Retinal Axon Guidance , 2001, Science.

[50]  H Okamoto,et al.  Overexpression of a slit homologue impairs convergent extension of the mesoderm and causes cyclopia in embryonic zebrafish. , 2001, Developmental biology.

[51]  B. Dickson,et al.  Selecting a Longitudinal Pathway Robo Receptors Specify the Lateral Position of Axons in the Drosophila CNS , 2000, Cell.

[52]  Julie H. Simpson,et al.  Short-Range and Long-Range Guidance by Slit and Its Robo Receptors A Combinatorial Code of Robo Receptors Controls Lateral Position , 2000, Cell.

[53]  L Erskine,et al.  Retinal Ganglion Cell Axon Guidance in the Mouse Optic Chiasm: Expression and Function of Robos and Slits , 2000, The Journal of Neuroscience.

[54]  Mu-ming Poo,et al.  A Ligand-Gated Association between Cytoplasmic Domains of UNC5 and DCC Family Receptors Converts Netrin-Induced Growth Cone Attraction to Repulsion , 1999, Cell.

[55]  C. Goodman,et al.  Slit Proteins Bind Robo Receptors and Have an Evolutionarily Conserved Role in Repulsive Axon Guidance , 1999, Cell.

[56]  C. Goodman,et al.  Biochemical Purification of a Mammalian Slit Protein as a Positive Regulator of Sensory Axon Elongation and Branching , 1999, Cell.

[57]  Y. Rao,et al.  Vertebrate Slit, a Secreted Ligand for the Transmembrane Protein Roundabout, Is a Repellent for Olfactory Bulb Axons , 1999, Cell.

[58]  C. Goodman,et al.  Slit Is the Midline Repellent for the Robo Receptor in Drosophila , 1999, Cell.

[59]  W. Halfter,et al.  Disruption of the pial basal lamina during early avian embryonic development inhibits histogenesis and axonal pathfinding in the optic tectum , 1998, The Journal of comparative neurology.

[60]  W. Halfter,et al.  Distribution and substrate properties of agrin, a heparan sulfate proteoglycan of developing axonal pathways , 1997, The Journal of comparative neurology.

[61]  J R Sanes,et al.  Lamina-specific connectivity in the brain: regulation by N-cadherin, neurotrophins, and glycoconjugates. , 1997, Science.

[62]  H. Baier,et al.  Genetic dissection of the retinotectal projection. , 1996, Development.

[63]  J. Sanes,et al.  Target-independent diversification and target-specific projection of chemically defined retinal ganglion cell subsets. , 1995, Development.

[64]  J. Sanes,et al.  Lamina-specific cues guide outgrowth and arborization of retinal axons in the optic tectum. , 1995, Development.